

54VCXH163245

Datasheet

Rad-hard 16-bit transceiver, 1.8 V to 3.3 V bidirectional level shifter

Ceramic Flat-48

The upper metallic lid is electrically connected to ground (see availability in order codes table)

Features

- Dual supply bidirectional level shifter
- Separated enable pin for 3-state output
- Internal 26 Ω limiting resistor on each A side output buffer
- Bus hold
- Fail safe
- Cold spare
- Hermetic package
- 300 krad (Si) TID
- SEL immune to 110 MeV.cm²/mg LET ions
- SMD: 5962F11207
- Mass: 1.5 g

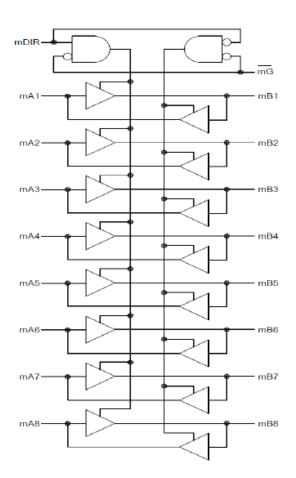
Product status link

54VCXH163245

Description

•

The 54VCXH163245 is a rad-hard advanced high-speed CMOS, 16-bit bidirectional, multi-purpose transceiver with 3-state outputs and cold sparing.

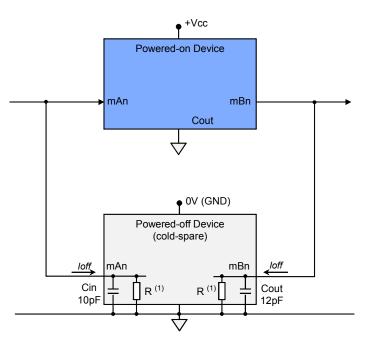

Designed to be used as an interface between a 3.3 V bus and a 1.8 V bus in mixed 3.3 V/1.8 V supply systems, it achieves high-speed operations while maintaining the CMOS low power dissipation.

All pins have cold spare buffers to change them to high impedance when V_{DD} is tied to ground.

This IC is intended for a two-way asynchronous communication between data buses. The direction of data transmission is determined by the nDIR inputs.

1 Functional description

Figure 1. Logic diagram

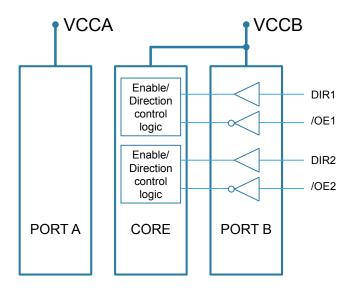


In	iputs	Fund	ction	Outputs	Comments	
m G	mDIR	Bus A	Bus B	Outputs	Comments	
L	L	Output	Input	A = B	H = high-voltage level	
L	Н	Input	Output	B = A	L = low-voltage level	
Н	х	Z	Z	Z	Z = high impedance X = irrelevant or don't care	

1.1 Cold spare

The 54VCXH163245 features a cold spare input and output buffer. In high reliability applications, cold sparing enables a redundant device to be tied to the data bus with its power supply at 0 V ($V_{CC} = 0$ V) without affecting the bus signals or injecting current from the I/Os to the power supplies. Cold sparing also allows redundant devices that are not powered to be switched on when required only. Power consumption is therefore reduced by switching off the redundant circuit. This has no impact on the application. Cold sparing is achieved by implementing a high impedance between I/Os and V_{CC} . The ESD protection is ensured through a non-conventional dedicated structure. Using cold spare on Bus A and Bus B separately is not allowed. In cold spare, both V_{CCA} and V_{CCB} must be at 0 V.

1. $R = loff/V_{CC}$



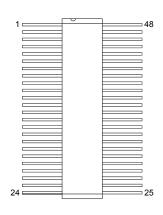
1.2 Power-up and operating

During power-up, all outputs should be forced to high impedance by setting /OEx high, after VCCA and VCCB are switched on, /OEx can be set low.

- In power-up: VCCB must be powered up before VCCA
- In operating mode, to guarantee proper operation functionality after power-up: VCCA has to be above or equal to VCCB (VCCB higher than VCCA is forbidden)
- In power-down:
 VCCA must be powered down before VCCB.

Warning: If these power sequencing are not respected, the integrity (reliability, aging) is not impacted, however an erroneous signal can occur on the outputs during power-up and power-down.

Figure 3. Power supply domain


Note: Control signals on DIRx and /OEx, corresponding CMOS logic levels that apply to all control inputs are: $V_{ILmax} = 0.3xVCCB$ and $V_{IHmin} = 0.7xVCCB$.

For a proper operation, connect power to all VCC and ground all GND pins (i.e., no floating VCC or GND pins). Tie all unused inputs to GND.

1.3 Pin connections and description

Figure 4. Pin connections

Table 2. Pin description

Device type	All						
Case outline		X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol				
1	1DIR	25	2G				
2	1B1	26	2A8				
3	1B2	27	2A7				
4	GND	28	GND				
5	1B3	29	2A6				
6	1B4	30	2A5				
7	V _{CCB}	31	V _{CCA}				
8	1B5	32	2A4				
9	1B6	33	2A3				
10	GND	34	GND				
11	1B7	35	2A2				
12	1B8	36	2A1				
13	2B1	37	1A8				
14	2B2	38	1A7				
15	GND	39	GND				
16	2B3	40	1A6				
17	2B4	41	1A5				
18	V _{CCB}	42	V _{CCA}				
19	2B5	43	1A4				
20	2B6	44	1A3				
21	GND	45	GND				
22	2B7	46	1A2				
23	2B8	47	1A1				
24	2DIR	48	1G				

Absolute maximum ratings and operating conditions

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. Unless otherwise noted, all voltages are referenced to GND. The limits for the parameters specified herein apply over the full specified V_{CC} range and case temperature range of -55 °C to 125 °C.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage (V _{CCA} and V _{CCB}) ⁽¹⁾	-0.5 to 4.6	
VIA	DC input voltage range port A	-0.5 to 4.6	
V _{IB}	DC input voltage range port B	-0.5 to 4.6	V
G/DIR	DC input voltage range G and DIR	-0.5 to 4.6	v
V _{OA}	DC output voltage range port A	-0.5 to V _{CCA} + 0.5 V	
V _{OB}	DC output voltage range port B	-0.5 to V _{CCB} + 0.5 V	
I _{IA}	DC input currents port A, anyone input	± 20	mA
I _{IB}	DC input currents port B, anyone input	± 20	- IIIA
T _{stg}	Storage temperature range	-65 to 150	
TL	Lead temperature (10 s)	260	°C
TJ	Junction temperature range	150	
R _{thjc}	Thermal resistance junction-to-case ⁽²⁾	22	°C/W
ESD	HBM: human body model ⁽³⁾	2	kV

Table 3. Absolute maximum ratings

1. V_{CCA} must be higher or equal to V_{CCB} . (V_{CCB} higher than V_{CCA} is forbidden).

2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.

 Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

In Table 4. Operating conditions below, unless otherwise noted, all voltages are referenced to GND.

Table 4. Operating conditions

Symbol	Parameter	Value	Unit
V _{CCA}	Currely us here a (1)	1.0 (2) to 2.0	
V _{CCB}	- Supply voltages (1)	1.8 ⁽²⁾ to 3.6	N
VI	Input voltage	0 to 3.6	V
V _O	Output voltage	0 to V _{CC}	
T _{op}	Operating temperature	-55 to 125	°C
d _t /d _v	Input rise and fall time, V _{CC} = 3 V $^{\rm (3)}$	0 to 10	ns/V

1. V_{CCA} must be higher or equal to V_{CCB} . (V_{CCB} higher than V_{CCA} is forbidden).

1.8 V min. operating is guaranteed with a functional test at V_{CCB} = 1.8 V and V_{CCA} = 3.6 V, with V_{IL} = 0.63 V and V_{IH} = 1.17 V applied on V_{inB}, EN and DIR inputs. However, few parameters like V_{OL}, V_{OH} and I_{i(Hold)} are tested in production with V_{CCB} = 1.65 V and V_{CCA} = 2.3 V, with V_{IL} = 0.58 V (0.35 x V_{CCB}), V_{IH} = 1.07 V (0.65 x V_{CCB}) applied on V_{inB}, EN and DIR inputs. (see Table 5) in reference: SMD 5962-11207, rev. E. Contact ST sales forces for further information on the power-supply.

3. Derates system propagation delays by difference in rise time to switch point for t_r or $t_f > 1$ ns/V.

3 Electrical characteristics

In Table 5. Electrical characteristics below, $T_{op} = -55$ °C to 125 °C, unless otherwise specified. Each input/output, as applicable, is tested at the specified temperature, for the specified limits. Non-designated output terminals are high level logic, low level logic or open, except for all I_{CC} tests, where the output terminals are open. When performing these tests, the current meter must be placed in the circuit so that all current flows through the meter.

Symbol	Parameter	Parameter Test conditions		V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
V _{IC-}	Negative input clamp voltage	I _{IN} = -1 mA	I _{IN} = -1 mA		Open	-1.5	-0.4	
			I _{OH} = -100 μA	3	2.3	2.8		
		Bus A output	I _{OH} = -8 mA	3	2.3	2.4		_
		V _{IN} = V _{IH} (min) or V _{IL} (max)	I _{OH} = -8 mA	3	1.65	2.4		_
			I _{OH} = -6 mA	2.3	1.65	1.8		_
V _{OH}	High-level output voltage		I _{OH} = -100 μA	3	2.3	2.1		_
		Bus B output	I _{OH} = -18 mA	3	2.3	1.7		_
		V _{IN} = V _{IH} (min) or V _{IL} (max)	I _{OH} = -6 mA	3	1.65	1.25		_
			I _{OH} = -6 mA	2.3	1.65	1.25		_
			I _{OL} = 100 μA	3	2.3		0.2	_
		Bus A output	I _{OL} = 8 mA	3	2.3		0.55	_
	Low-level output voltage	V _{IN} = V _{IH} (min) or V _{IL} (max)	I _{OL} = 8 mA	3	1.65		0.55	
N (I _{OL} = 6 mA	2.3	1.65		0.4	
V _{OL}			I _{OL} = 100 μA	3	2.3		0.2	
		Bus B output	I _{OL} = 18 mA	3	2.3		0.6	
		V _{IN} = V _{IH} (min) or V _{IL} (max)	I _{OL} = 6 mA	3	1.65		0.3	
			I _{OL} = 6 mA	2.3	1.65		0.3	
		Bus A		1.8	1.8	0.65 x V _{CCA}		
				2.5	2.5	1.6		
VIH	High-level input voltage			3.3	3.3	2		
чн	ngn-level input voltage				1.8	0.65 x V _{CCB}		
		Bus B		2.5	2.5	1.6		
				3.3	3.3	2		
				1.8	1.8		0.35 x V _{CCA}	
		Bus A		2.5	2.5		0.7	
V _{IL}	Low-level input voltage			3.3	3.3		0.8	v
				1.8	1.8		0.35 х V _{CCB}	, i
		Bus B		2.5	2.5		0.7	
				3.3	3.3		0.8	
I _{IH}	Input leakage current high	On nDIR and \overline{G} :		3.6	2.7		5	μA

Table 5. Electrical characteristics

Symbol	Parameter	Parameter Test conditions		V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
		For input under te	est: V _{IN} = V _{CC}					
		For all other input GND	ts: $V_{IN} = V_{CC}$ or					
		On nDIR and \overline{G} :						
IIL	Input leakage current low	For input under te	est: V _{IN} = GND	3.6	2.7	-5		
		For all other input GND	ts: $V_{IN} = V_{CC}$ or					
		DIR and $\overline{G} = V_{CC}$	_B or GND:					
ICCH	Quiescent current, output high	For Bus A, V _{IN} =	V _{CCA} or GND	3.6	3.6		20	
		For Bus B, V _{IN} =	V _{CCB} or GND					
		DIR and $\overline{G} = V_{CC}$	_B or GND:					
I _{CCL}	Quiescent current, output low	For Bus A, V _{IN} =	V _{CCA} or GND	3.6	3.6		20	
		For Bus B, V _{IN} =	V _{CCB} or GND					
		For input under te	est:					μA
ΔI _{CC}	Quiescent current delta, TTL input	V _{IH} = V _{CC} - 0.6 V		3.6	3.6		750	
00	levels	For all other inputs:						
		$V_{IN} = V_{CC}$ or GNI						_
	Quiescent current, output three-	DIR and \overline{G} = V _{CCB} or GND: For Bus A, V _{IN} = V _{CCA} or GND		3.6	3.6			
I _{CCZ}	state						20	
		For Bus B, $V_{IN} = V_{CCB}$ or GND						_
I _{OZH}	Three-state output leakage current high	$V_{IN} = V_{IH} min. or V_{IL} max,$		3.6	2.7		5	
		$V_{OUT} = V_{CC}$ or G						_
I _{OZL}	Three-state output leakage current low	$V_{IN} = V_{IH}$ min. or		3.6	2.7	-5		
		$V_{OUT} = V_{CC}$ or G						_
	Power-off leakage current (cold	DIR and $\overline{G} = GNI$			0	10		
I _{OFF}	spare)	For Bus A, $V_{IN} = V_{CCA}$ to 3.6 V For Bus B, $V_{IN} = V_{CCB}$ to 3.6 V		0	0	-10	10	
		TOT BUS B, VIN -	V _{INA} = 0.7 V	2.3	1.65	45		
			V _{INA} = 1.6 V	2.3	1.65		-45	_
			V _{INA} = 0.8 V	3	1.65	75		-
		Bus A	V _{INA} = 2 V	3	1.65		-75	-
			V _{INA} = 0.8 V	3	2.3	75		-
			V _{INA} = 2 V	3	2.3		-75	-
			V _{INA} 0 to 3.6 V	3.6	2.7		±500	-
I _{I(HOLD)}	Input hold current		V _{INB} = 0.57 V	2.3	1.65	25		μA
			V _{INB} = 1.07 V	2.3	1.65		-25	-
			V _{INB} = 0.57 V	3	1.65	25		-
		Bus B	V _{INB} = 1.07 V	3	1.65		-25	-
			V _{INB} = 0.7 V	3	2.3	45		-
								-
			V _{INB} = 1.6 V	3	2.3		-45	

Symbol	Parameter	Test conditions	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
C _{IN}	Input capacitance		GND	GND		10	
C _{OUT}	Output capacitance	Tc = 25 °C ⁽¹⁾	GND	GND		12	pF
C _{PD}	Power dissipation capacitance, 1 MHz		3.3	2.5		20	_ p.
	— Functional tests	$\lambda = \lambda = 1$	3.6 V	1.8 V			
_	Functional tests	$V_{IN} = V_{IH}$ min. or V_{IL} max.	2.7 V	2.3 V	L	Н	_
			2.5	1.8		6	
t _{PHL1} and t _{PLH1}	Propagation delay time mAn to mBn	C_L = 30 pF min., R_L = 500 Ω	3.3	1.8		6	-
*FEITI			3.3	2.5		5.5	-
			2.5	1.8		7.5	-
PHL2 and	L2 and Propagation delay time mBn to PLH2 mAn	C_L = 30 pF min., R_L = 500 Ω	3.3	1.8		7	-
*FLHZ			3.3	1.8		7	-
			2.5	1.8		10	-
t _{PZL1}		C_L = 30 pF min., R_L = 500 Ω	3.3	1.8		10	
	Propagation delay time, output enable, m G to mBn		3.3	2.5		7	
t _{PZH1}			2.5	1.8		10	ns
			3.3	1.8		10	-
			3.3	2.5		7	-
			2.5	1.8		8.5	-
t _{PZL2}		C_L = 30 pF min., R_L = 500 Ω	3.3	1.8		8.5	
	Propagation delay time, output		3.3	2.5		8	
	enable, m G to mAn		2.5	1.8	1	8.5	
t _{PZH2}			3.3	1.8		8.5	
			3.3	2.5		8	
			2.5	1.8		6	
t _{PLZ1}			3.3	1.8		6	-
	Propagation delay time, output		3.3	2.5		5.5	1
	disable, m G to mBn	C_L = 30 pF min., R_L = 500 Ω	2.5	1.8		6	-
t _{PHZ1}			3.3	1.8		6	-
			3.3	2.5		5.5	1
			2.5	1.8		7.5	ns
t _{PLZ2}			3.3	1.8		7	1
	Propagation delay time, output		3.3	2.5		7	-
	disable, m G to mAn	C_L = 30 pF min., R_L = 500 Ω	2.5	1.8		7.5	1
t _{PHZ2}			3.3	1.8		7	-
			3.3	2.5		7	-

 C_{IN}, C_{OUT}, and C_{PD} are measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and C_{OUT} are measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 MHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test (V_{BIAS}) = 2.5 V or 3.0 V. For C_{IN}, C_{OUT}, and C_{PD}, all applicable pins are tested on five devices with zero failures. Power dissipation capacitance (C_{PD}) determines both the power consumption (PD) and dynamic current consumption (IS), where: PD = (C_{PD} + C_L) (V_{CC} x V_{CC}) f + (I_{CC} x V_{CC}) + (n x d x ΔI_{CC} x V_{CC}), IS = (C_{PD} + C_L) V_{CC} f + I_{CC} + n x d x ΔI_{CC}. For both P_D and I_S, n is the number of device inputs at TTL levels, d is the duty cycle of the input signal, f is the frequency of the input signal, and C_L is the external output load capacitance.

4 Radiations

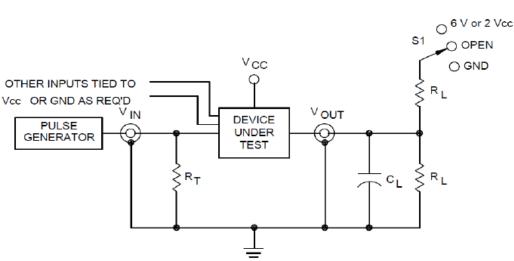
Total dose (Mil1019 dose rate): all parameters are post-irradiation guaranteed by wafer-lot acceptance (after dose, all guaranteed electrical parameters are tested on a sample of units of each wafer lot). All parameters provided in Table 5. Electrical characteristics apply to both pre- and post-irradiation. The 54VCXH163245 is a pure CMOS product. The irradiation is performed at high dose rates.

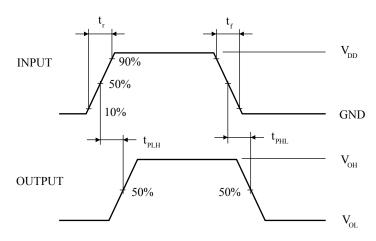
Heavy-ions: the behavior of the product when submitted to heavy ions is guaranteed by qualification and is not tested in production. Heavy-ion trials are performed on qualification lots only.

Table 6. Radiations

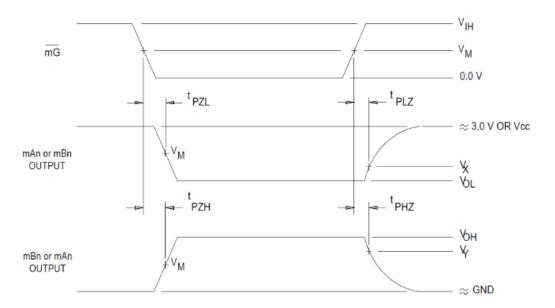
Туре	Features	Value	Unit	
TID	Total Ionizing dose, high-dose rate (50 - 300 rad/s) up to:	300	krad	
Heavy ions	SEL immune (at 125 °C) up to:	110	MoV/cm ² /mg	
Tleavy Ions	SEU immune up to:	18.5	MeV.cm ² /mg	

Test circuit

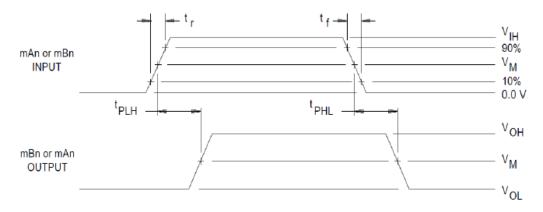


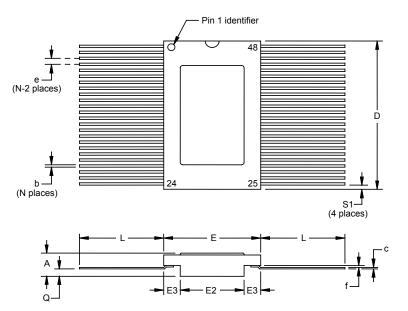

Figure 5. Test circuit

- 1. C_L = 50 pF or equivalent (includes jig and probe capacitance), R_T = Z_{OUT} of pulse generator (typically 50 Ω), V_{REF} = 0.5 V_{DD}. I_{SRC} is set to -1.0 mA and I_{SNK} is set to 1.0 mA for t_{PHL} and t_{PLH} measurements. Input signal from pulse generator: $V_I = 0.0$ V to V_{DD} ; f = 10 MHz; $t_r = 1.0$ V/ns ±0.3 V/ns; $t_f = 1.0$ V/ns ±0.3 V/ns; tr and tf are measured from 0.1 V_{DD} to 0.9 V_{DD} and from 0.9 V_{DD} to 0.1 V_{DD} respectively.
- 2. When measuring t_{PLH} and t_{PHL} : S1 = open
- 3. When measuring t_{PLZ} and t_{PZL} : S1 = 2V_{CC} for V_{CC} = 1.8 V and V_{CC} = 2.3 V to 2.7 V; S1 = 6.0 V for V_{CC} = 3.0 V to 3.6 V.
- 4. When measuring t_{PHZ} and t_{PZH} : S1 = GND.
- 5. The t_{PZL} and t_{PZH} reference waveform is for the output under test with internal conditions set so that the output is low at V_{OL} except when disabled by the output enable control. The t_{PZL} and t_{PZH} reference waveform is for the output under test with internal conditions set so that the output is high at V_{OH} except when disabled by the output enable control.
- 6. $C_1 = 30 \text{ pF}$ minimum or equivalent (includes test jig and probe capacitance)
- 7. $R_T = 50 \Omega$ or equivalent, $R_L = 500 \Omega$ or equivalent
- 8. Input signal from pulse generator: V_{IN} = 0.0 V to V_{IH} ; PRR = 1 MHz; ZO = 50 Ω ; tr = 2.0 ns; tf = 2.0 ns; tr and tf are measured from 10 % of V_{IH} to 90 % of V_{IH} and from 90 % of V_{IH} to 10 % of V_{IH} , respectively; duty cycle = 50 percent.
- 9. Timing parameters are tested at a minimum input frequency of 1 MHz


Table 7. Voltage points for measurements
--

Symbol	Parameter	V _{cc}				
Symbol	Falanetei	1.8 V, 2.3 V, and 2.7 V	3 V to 3.6 V			
V _{IH}	High-level input voltage	V _{CC}	2.7 V			
V _M	Middle threshold voltage point	V _{CC} /2	1.5 V			
V _X	Low threshold voltage point	V _{OL} + 0.15 V	V _{OL} + 0.3 V			
V _Y	High threshold voltage point	V _{OH} - 0.15 V	V _{OH} - 0.3 V			


Figure 6. Propagation delay


57

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 Ceramic Flat-48 package information

Figure 9. Ceramic Flat-48 package outline

Table 8. Ceramic Flat-48 mechanical data

	Dimensions								
Ref.		mm		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	2.18	2.47	2.72	0.086	0.097	0.107			
b	0.20	0.254	0.30	0.008	0.010	0.012			
с	0.12	0.15	0.18	0.005	0.006	0.007			
D	15.57	15.75	15.92	0.613	0.620	0.627			
E	9.52	9.65	9.78	0.375	0.380	0.385			
E2	6.22	6.35	6.48	0.245	0.250	0.255			
E3	1.52	1.65	1.78	0.060	0.065	0.070			
е		0.635			0.025				
f		0.20			0.008				
L	6.85	8.38	9.40	0.270	0.330	0.370			
Q	0.66	0.79	0.92	0.026	0.031	0.036			
S1	0.25	0.43	0.61	0.010	0.017	0.024			

7 Ordering information

Table 9. Order code

Order code	SMD ⁽¹⁾	Qualification level	Mass	Package	Lead finish	Marking ⁽²⁾	Packing	
RHFXH163245K1	-	Engineering Model		Flat-48		RHFXH162244K1		
RHFXH163245K01V	5962F11207	QML-V Flight	1.5 g	Flat-48	Gold	5962F1120701VXC	Conductive strip pack	
RHFXH163245K03V	5962F11207	QML-V Flight		Flat-48 with grounded-lid	5962E1120701\/YC	puok		

1. Standard micro circuit drawing.

2. Specific marking only. Complete marking includes the following:

• ST logo

• Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)

• Country of origin (FR= France)

8 Other information

8.1 Date code

The date code (date the package was sealed) is structured as follows:

- Engineering model: 3yywwz
- Flight model: yywwz

Where:

yy = last two digits of the year, ww = week digits, z = lot index of the week

8.2 Product documentation

Each product shipment includes a set of associated documentation within the shipment box. This documentation depends on the quality level of the products, as detailed in the table below.

The certificate of conformance is provided on paper whatever the quality level. For QML parts, complete documentation, including the certificate of conformance, is provided on a CDROM.

Table 10. Product documentation

Quality level	Item	
Engineering model	Certificate of conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Reference to ST datasheet Reference to TN1181 on engineering models ST Rennes assembly lot ID 	
QML-V Flight	Certificate of Conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Serial numbers Group C reference Group D reference Reference to applicable SMD ST Rennes assembly lot ID	
	Quality control inspection (groups A, B, C, D, E) Screening electrical data in/out summary	
	Precap report	
	PIND (particle impact noise detection) test	
	SEM (scanning electronic microscope) inspection report	
	X-ray plates	

Revision history

Table 11. Document revision history

Date	Revision	Changes	
27-Jul-2016	1	Initial release	
15-Sep-2016	2	Table 4: "Absolute maximum ratings": updated V_{IA} value and added G/DIR parameter. Table 5: "Operating conditions": updated V_I value	
29-Sep-2016	3	Section 1.1: "Cold spare": updated text Section 1.2: "Power-up": updated footnotes of Figure 3: "Power-up"	
30-Nov-2017	4	Updated Heavy ions value Table 7: "Radiations"	
17-Sep-2018	5	Updated Figure 3. Power supply domain and Section 1.2 Power-up and operating, Section 1.3 Pin connections and description and Section 7 Ordering information. Minor text changes	
13-Jul-2021	6	Updated Section Features and Section 1.2 Power-up and operating.	
14-Sep-2021	7	Updated Section Description.	
06-Mar-2024	8	Updated figure and features on the cover page. Updated Section 1.2: Power-up and operating, V _{CCA} , V _{CCB} value in Table 4 and Table 9. Order code. Added footnote in Table 4. Minor text changes.	

Contents

1	Functional description		2	
	1.1	Cold spare		
	1.2	Power-up and operating		
	1.3	Pin connections and description		
2	Abs	solute maximum ratings and operating conditions	6	
3	Elec	ctrical characteristics		
4	Radiations			
5	Test circuit			
6	Package information			
	6.1	Ceramic Flat-48 package information		
7		ering information		
8	Other information			
	8.1	Date code		
	8.2	Product documentation.		
Rev	ision	history		

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved