

16-CHANNEL, 16-BIT PWM DIMMING LED DRIVER

Description

The AL58263 is a 16-channel constant-current LED driver with 16-bit grayscale Adaptive Pulse Density Modulation (APDM) and supports error diagnostics, power-saving functionality, and current gain control. This distinctive APDM technology abates the non-ideal IOUT distortion due to non-symmetric transient responses and enhances the refresh rate by efficiently separating the frame waveform.

The device operates over a 3V to 5.5V input voltage range, 15V output channel voltage, fast 25MHz DCK input, and delivers up to 55mA of high-accuracy current to each LED string. Each channel's output current can be programmable through a digital interface individually. All channels' output current can be set by one external sensing resistor, along with a 6-bit global current control register.

The AL58263 has built-in diagnostics and LED open/short protection, including error detection. These error results are stored in a register for the MCU to read out.

The AL58263 is available in the TSSOP-24EP (Type A1-B) and wettable flank W-QFN4040-24/SWP (Type A1) packages. The device is specified over the -40°C to +105°C ambient temperature range.

Features

- Input Voltage VDD: 3V to 5.5V
- **Output Current Range**
 - 2~55mA/5V, 2~35mA/3.3V
 - ±0.1% Output current regulation capability
 - 6-bit global current control: from 12.5% to 200%
 - 16 Constant-Current Sink Output Channel
 - 16-bit grayscale resolution with Adaptive Pulse Density Modulation control
 - 15V rated output channels for long LED strings
 - Fast Transient Response supports external grayscale • clock with double edge up to 16MHz
 - ±1.5% (typ.) LED Current accuracy between channels
 - ±3% (typ.) LED Current accuracy between chips
 - Non-scramble waveform for high power LED application
 - Grayscale counter reset selection •
 - Grayscale data synchronization selection •
- **Diagnosis and Protections**
 - Error detection includes LED Open, LED Short, Output port leakage, Output short-to-GND, Output short-to-Power and REXT short-to-GND
 - Error detection LEDs on at 0.1mA to avoid any flickering
 - Short detection threshold voltage selection (2/3/4/4.5V)
 - Sleep and 0-data mode to lower down the supply current
 - Pre-overtemperature warning
- 4-Wire Serial Interface (LAT, DI, DO, DCK)
 - 25MHz clock frequency for data transfer
 - EMI reduction grayscale clock
 - Cascaded capability (Max 1,440 devices)
 - External GCK watchdog
 - Stagger outputs delay for EMI reduction
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- An automotive-compliant part is available under a separate datasheet (AL58263Q).

Pin Assignments

(3D Step file available upon request)

TSSOP-24EP (Type A1-B)

(3D Step file available upon request)

(Top View - Not to Scale)

Applications

- Indoor and outdoor LED video displays
- Variable message signs (VMS)
- Traffic signs
- Outdoor billboard signage
- LCD display backlighting

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

(3D Photo - Not to Scale)

Typical Applications Circuit

Pin Descriptions

NAME	PIN TSSOP-24EP	PIN W-QFN4040-24/SWP	DESCRIPTION
GND	(Type A1-B)	(Type A1) 10	Ground terminal
DI	2	23	Serial data input terminal.
DCK	3	24	Synchronous clock input terminal for serial data transfer. Data is sampled at the rising edge of DCK.
LAT	4	1	Input terminal of data strobe and mode setting. Combine DCK with LAT signal to execute the mode control
OUT0 to OUT15	5 to 20	2 to 9, 11 to 18	Sink constant-current outputs (open-drain).
GCK	21	20	External double-edge grayscale clock input for APDM operations
DO	22	19	Serial data output terminal.
REXT	23	21	External resistors connected between REXT and GND for output current value setting.
VDD	24	22	Supply voltage terminal.

Equivalent Circuit of Inputs and Outputs

1. DCK, DI, LAT, GCK terminals

2. DO terminal

Functional Block Diagram

Absolute Maximum Ratings

Symbol	Parameters	Ratings	Unit
VDD	Supply Voltage	-0.3 ~ 7.0	V
$V_{DI},V_{DCK},V_{GCK},V_{LAT}$	Input Voltage	-0.3 ~ VDD+0.3	V
IOUT	Output Current	60	mA
VOUT	Output Voltage	-0.3 ~ 16	V
FDCK	Input Clock Frequency	25	MHz
FGCK	Input Grayscale Frequency	16	MHz
IGND	GND Terminal Current	960	mA

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

(2) All voltage values are with respect to ground terminal.

(3) Operation at Tj(max) = 150°C may reduce the device reliability; therefore, the suggested junction temperature of the device is under 125°C.

ESD Ratings							
Symbol	Parameter	Value	Unit				
	Human-Body Model (HBM)	2000	V				
Vesd	Charged-Device Model (CDM)	750	V				

Package Thermal Data (Note 4)

Cumhal			Unit	
Symbol	Thermal Resistance	TSSOP-24EP (Type A1-B)	W-QFN4040-24/SWP (Type A1)	Unit
$R_{\Theta JA}$	Junction-to-ambient thermal resistance	25.57	31.16	°C/W
R _{OJC(top)}	Junction-to-case (top) thermal resistance	14.47	17.25	°C/W
$R_{\Theta JB}$	Junction-to-board thermal resistance	9.57	9.34	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.33	0.41	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	9.39	9.14	°C/W
$R_{\Theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	3.21	3.33	°C/W

Note: 4. Test condition: Device mounted on FR-4 PCB (51mm x 51mm 2oz copper, minimum recommended pad layout on top layer and thermal vias to bottom layer with maximum area ground plane. For better thermal performance, larger copper pad for heat-sink is needed.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Operating Supply Voltage	3.0	3.3	5.5	V
Ιουτ	Output Current (Note 5)	2	_	55	mA
Vout	Output Voltage	1	_	15	V
T _A	Ambient Temperature (Note 5)	-40	_	+105	°C
TJ	Junction Temperature	-40	—	+125	°C
Tstg	Storage Temperature	-55	_	+150	°C

Note: 5. Dependent on ambient temperature, LED voltage, package thermal limitation, and PCB layout.

Electrical Characteristics (VDD=5.0V @T_A = +25°C, unless otherwise specified.)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	V
Input Voltage "L" Level	VIL	CMOS logic level	GND	_	0.3VDD	V
Output Leakage Current	ILK	VOUT = 15 V		_	0.1	uA
	IOL	VOL = 0.4V	1	3.4	5	~^
Driving Current (DO)	IOH	VOH= VDD-0.4	-5	-3.4	-1	mA
Output Current Skew (Channel-to-Channel) (Note 6)	dIOUT1	VOUT = 1.0 V Rrext = 560 Ω		±1.5	±3	%
Output Current Skew (Chip-to-Chip) (Note 7)	dIOUT2	GCC=101011	—	±3	±6	%
Output Current Skew (Channel-to-Channel) (Note 6)	dIOUT3			±1.5	±3	%
Output Current Skew (Chip-to-Chip) (Note 7)	dIOUT4	Rrext = 7 KΩ GCC=101011		±3	±6	%
Output Voltage Regulation (Note 8)	% / VOUT	Rrext = 560 Ω VOUT = 1 V ~ 3 V	_	±.0.1	±.1	0(())
Supply Voltage Regulation (Note 9)	% / VDD	Rrext = 560 Ω VDD = 3 V ~ 5.5 V	—	±0.6	±1	% / V
	I _{DD1(off)}	Rrext = 7 K Ω all outputs turn off	1	2.5	4	
	I _{DD2(on)}	Rrext = 7 K Ω all outputs turn on	1	2.5	4	
Supply Current (Note 10)	I _{DD3(off)}	Rrext = 560 Ω all outputs turn off	1	5.5	7.5	mA
	I _{DD4(on)}	Rrext = 560 Ω all outputs turn on	1	5.5	7.5	
Thermal alarm temperature	TAL	—		+155	_	°C
Thermal alarm temperature hysteresis	TAL_HYS	_	_	+15	—	°C

Notes: 6. Channel-to-channel skew is defined by the formula below:

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] * 100\%$$

7. Chip-to-Chip skew is defined by the formula below:

$$\Delta(\%) = \left[\begin{array}{c} (Iout_0 + Iout_1 + ... + Iout_{15}) - (Ideal \ Output \ Current) \\ \hline 16 \\ \hline (Ideal \ Output \ Current) \end{array} \right] * 100\%$$

8. Output voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n (@Vout_n = 3V) - Iout_n (@Vout_n = 1V)}{Iout_n (@Vout_n = 3V)} \right]^* \frac{100\%}{3V - 1V}$$

9. Supply voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n @V_{DD} = 5.5V) - Iout_n @V_{DD} = 3V)}{Iout_n (@Vcc = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

10. IO excluded.

Electrical Characteristics	(VDD= $3.3V @T_A = +25^{\circ}C$, unless otherwise specified.)
----------------------------	---

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	M
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 15 V			0.1	uA
	IOL	VOL = 0.4V	1	2.5	5	
Driving Current (DO)	IOH	VOH= VDD-0.4	-5	-2.5	-1	mA
Output Current Skew (Channel-to-Channel) (Note 11)	dIOUT1	VOUT = 1.0 V Rrext = 560 Ω	—	±1.5	±3	%
Output Current Skew (Chip-to-Chip) (Note 12)	dIOUT2	GCC=101011	—	±3	±6	%
Output Current Skew (Channel-to-Channel) (Note 11)	dIOUT3	VOUT = 1.0 V	_	±1.5	±3	%
Output Current Skew (Channel-to-Channel) (Note 12)	dIOUT4	Rrext = 7 KΩ GCC=101011	—	±3	±6	%
Output Voltage Regulation (Note 13)	% / VOUT	Rrext = 560 Ω VOUT = 1 V ~ 3 V	—	±.0.1	±1	
Supply Voltage Regulation (Note 14)	% / VDD	Rrext = 560 Ω VDD = 3 V ~ 5.5 V	—	±0.7	±1	% / V
	I _{DD1(off)}	Rrext = 7 K Ω all outputs turn off	1	2.3	4	
0	I _{DD2(on)}	Rrext = 7 K Ω all outputs turn on	1	2.3	4	
Supply Current (Note 15)	I _{DD3(off)}	Rrext = 560 Ω all outputs turn off	1	4.7	7.5	mA
	I _{DD4(on)}	Rrext = 560 Ω all outputs turn on	1	4.7	7.5	
Thermal alarm temperature	TAL		_	+155	_	°C
Thermal alarm temperature hysteresis	TAL_HYS	_	_	+15	_	°C

Notes: 11. Channel-to-channel skew is defined by the formula below:

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + \dots + Iout_{15})} - 1 \right] * 100\%$$

12. Chip-to-Chip skew is defined by the formula below:

$$\Delta(\%) = \left[\begin{array}{c} (Iout_0 + Iout_1 + ... + Iout_{15}) - (Ideal \ Output \ Current) \\ \hline 16 \\ \hline (Ideal \ Output \ Current) \end{array} \right] * 100\%$$

13. Output voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n (@Vout_n = 3V) - Iout_n (@Vout_n = 1V)}{Iout_n (@Vout_n = 3V)} \right] * \frac{100\%}{3V - 1V}$$

14. Supply voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n @V_{DD} = 5.5V) - Iout_n @V_{DD} = 3V)}{Iout_n @V_{CC} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

15. IO excluded.

CHARA	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay ('L to 'H')	DCK-DO	tpLH3			30	35	
Propagation Delay ('H' to 'L')	DCK-DO	tpHL3			30	35	
	LAT	tw _(LAT)		50			
Pulse Duration	GCK	tw _(GCK)		20			
	DCK	tw _(DCK)		20			
Catura Tima	LAT	tsu _(LAT)		20			
Setup Time	DI	tsu _(D)	VIH = VDD VIL = GND	5			ns
Lield Time	LAT	th _(LAT)	Rrext = 560 Ω	20			
Hold Time	DI	th _(D)	VL =5.0 V RL = 150 Ω CL = 13 pF	5	_		
Hold Time of Instruction		th _(CM)		20			
LED Error Detection Time	e	Terr1		100			
Short-to-ground Detection	n Time	Terr3		160			
Interval between two command pulses		tpls		230	250		
Wake-up time from sleep	/ake-up time from sleep or 0-data mode			_		4000	us
Data Clock Frequency	F _{DCK}		_		25	N 41 1-	
Grayscale Clock Frequer	ncy (double-edge)	F _{GCK}		_		16	MHz

Switching Characteristics (VDD = 5.0V @T_A = +25°C, unless otherwise specified.) (Guarantee by design)

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay ('L to 'H')	DCK-DO	tpLH3			45	55	
Propagation Delay ('H' to 'L')	DCK-DO	tpHL3			45	55	
	LAT	tw _(LAT)		50	—	_	
Pulse Duration	GCK	tw _(GCK)		20			-
	DCK	tw _(DCK)		20		_	
Cotup Time	LAT	tsu _(LAT)		20			-
Setup Time	DI	tsu _(D)	VIH = VDD VIL = GND	5			ns
Lield Time	LAT	th _(LAT)	Rrext = 560 Ω	20		_	-
Hold Time	DI	th _(D)	VL =5.0 V RL = 150 Ω	5			-
Hold Time of Instruction		th _(CM)	CL = 13 pF	20		—	-
LED Error Detection Tim	e	Terr1		100		_	-
Short-to-ground Detection	on Time	Terr3		180		_	-
nterval between two command pulses		tpls		230	250	_	-
Wake-up time from sleep	o or 0-data mode	Twake			_	4000	us
Data Clock Frequency		F _{DCK}			_	15	N411-
Grayscale Clock Freque	ncy (double-edge)	F _{GCK}			_	16	MHz

Switching Characteristics (VDD = 3.3V @T_A = +25°C, unless otherwise specified.) (Guarantee by design)

Switching Characteristics Test Circuit

Switching Characteristics Test Circuit

Timing Characteristics (@T_A = +25°C, unless otherwise specified.)

Timing Diagram

1. DCKI-DI, DO

2. GCK-LAT

3. LAT-DCK (Instruction)

Typical Performance Characteristics (V_{DD} = 5V, -40°C < T_A < +85°C, unless otherwise specified.)

 $V_{DD} = 5V$, $I_{OUT} = 25mA$, 2mA

Figure 2. Chip to Chip Accuracy vs. Temperature

V_{DD} = 5V, I_{OUT} = 25mA Figure 3. Gain Control Current vs. Temperature

 $V_{DD} = 5V, \ I_{OUT} = 25mA$ Figure 4. PWM Linearity vs. Temperature

Functional Descriptions

Fast Transient Response

The AL58263 supports fast transient response times, making high image resolutions possible. The GCK period of 50ns is enough for a complete Vout waveform.

Stagger Outputs Delay

Large in-rush currents will be induced when the system activates all outputs at once. To reduce EMI interference, the AL58263 is designed to have a constant length of delay time (around 16ns) between two output groups. The first group is OUT2n and the second group is OUT2n+1 (n=0~7).

Global Current Control (GCC)

The AL58263 provides 6 bits of global current control (GCC), which can adjust output current by 64 steps. GCC bits are included in the command data as defined below:

F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
	_		_	_	_	HC	DA4	DA3	DA2	DA1	DA0			_	_

The relationship between the Gain value and GCC bits is described below: HC=1, Gain = $(3 \times D + 33) / 65 \times (1-0.001 \times D)$, the gain range is from 0.508 to 1.878 HC=0, Gain = $(3 \times D + 32) / 256 \times (1-0.0006 \times D)$, the gain range is from 0.125 to 0.479 Where D = DA4 x 2^4 + DA3 x 2^3 + DA2 x 2^2 + DA1 x 2^1 + DA0 x 2^0 For example, HC=1 and DA[4:0]=11000 $D = 1x 2^4 + 1x 2^3 + 0x 2^2 + 0x 2^1 + 0x 2^0 = 24$ Gain = (3 x 24 + 33) / 65 x (1-0.001 x 24) = 1.577

Reference Resistor

The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

lout (mA) = 13.45 / Rext(K Ω) x Gain

Where Rext is a resistor placed between REXT and GND.

This 13.45 constant center at 10mA may need to be adjusted slightly based on user application and test conditions. For example, lout is around 24.12mA when Rrext=560Ω and with GCC=101011.

60 GCC=101011 50 40 lout(mA) 30 20 10 0 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 6.0 6.6 **REXT(KΩ)** 4.8 5.4

/ AL58263 IOUT vs. Rext Curve

Constant-Current Output

The current characteristics are maintained invariably in the influence of loading voltage. Therefore, the AL58263 can minimize the interference of different LED forward voltages and produce constant current. The following figures illustrate the suitable output voltage that should be determined to keep excellent performance.

Control Instructions

Instruction Name	Number of DCK Pulses when LAT is at High	Function Description
Data Latch	0 or 1	Strobes image data into temporary registers. In this time, constant current outputs are not updated to a new frame data.
Global Latch	2 or 3	Strobes image data from temporary registers into an APDM/PWM generator. In this time, constant current outputs are updated to a new frame data.
Reading Image Data and Command Data	6 or 7	Read out image data and command data from the latch cell to the 272-bit shift registers. And the read data could shift out from DO pin by serial DCK pulses.
Return to Normal Mode	8 or 9	Switch Back from the reading data mode to the normal operating mode.
Writing Command	10 or 11	Strobes command data from the 16-bits shift register into the command latch cell.
Reset APDM/PWM Counter	12 or 13	This instruction will reset APDM/PWM counter to synchronize a new frame if CMD[11]="H".

Functional Descriptions (continued)

Writing Command Writing LAT 10 or 11 DCKs Command DCK MSB LSB DI Е F 0 Next Data **Previous Data** D C B A 9

Reset APDM/PWM Counter (set CMD[11]="1")

EMI Reduction Grayscale Clock (Double-edge Grayscale Clock)

A whole period of 16 bits of resolution must be composed by 65536 traditional grayscale clocks, as constant current outputs are only triggered at the rising edge of clocks. Therefore, a controller must transmit fast grayscale clocks in order to accomplish a high refresh rate when users adopt traditional PWM chips. The AL58263 supports a specific mode of double-edge grayscale clocks, which triggers both at the rising and falling edges of the clocks. By this approach, a whole period of 16 bits of resolution is composed by only 32768 double-edge grayscale clocks, and the electromagnetic interference decreases substantially due to the slow grayscale clocks.

Command Data Format

	CMD[0]	CMD[1]	CMD[2]	CMD[3]	CMD[4]	CMD[5]	CMD[6]	CMD[7]
	0	1	2	3	4	5	6	7
-	Watchdog	Sleep	Vth<0>	Vth<1>	DA0	DA1	DA2	DA3
-								
1000	CMD[8]	CMD[9]	CMD[10]	CMD[11]	CMD[12]	CMD[13]	CMD[14]	CMD[15]
	CMD[8] 8	CMD[9] 9	CMD[10]	CMD[11] B	CMD[12] C	CMD[13] D	CMD[14] E	CMD[15] F

CMD Bit	Initial Value	Value	Function	Description
		1'b0	Mode0	Data transmitting Format:
CMD[15]	1'b0		medee	15 times of data latch + one global latch
0		1'b1	Mode1	Data transmitting Format:
				16 times of data latch + one global latch
		1'b0	Enable	When the voltage of REXT is below 0.15V,
CMD[14]	1'b0	4264	Disable	all outputs will be forced off.
		1'b1	Disable	Disable
		1'b0	External GCK	The GCK signal stems from an external source
CMD[13]	1'b0			The GCK signal stems from an internal
		1'b1	Internal GCK	oscillator, 1.5MHz.
				(When CMD[13]="1",please set CMD[0]="0")
		1'b0	APDM mode	Enter the PWM mode to abate the transient
CMD[12]	1'b0			loss when AL58263 is as a PWM generator
		1'b1	PWM mode	when $CMD[12]=1'b0 \Rightarrow APDM mode$
				when CMD[12]=1'b1 => PWM mode
	(1) 0	1'b0	Disable	Disable
CMD[11]	CMD[11] 1'b0	1'b1	Enable	Execute counter reset by inserting 12 or 13
				DCKs (rising edge) when LAT keeps at high
		1'b0	Auto	When the device receives a latch signal, the new frame
CMD[10]	1'b0		Synchronization	is updated until the end of old frame
		1'b1	Manual	When the device receives a latch signal,
			Synchronization	the new frame is updated immediately
CMD[9:4]	6'b101011	6'b000000~	G.C.C	6-bit DA data for global current control
		6'b111111	0.01/	(allow 64-step programmable current gain)
		2'b00	2.0V	Three held welter as fear LED about data stice
CMD[3:2]	2'b00	2'b01 2'b10	3.0V 4.0V	Threshold voltage for LED short detection (both at VDD = $5V$ and $3.3V$)
		2'b11	4.0V 4.5V	(both at $VDD = 5V$ and $3.5V$)
		1'b0	Disable	Enter 0-data power saving mode
CMD[1]	1'b0	1'b1	Enable	when 16bits PWM data of 16ch are all zeros
		1'b0	Disable	GCK watchdog
		1.00	Disable	All IOUTs will be turned off automatically when GCK
CMD[0]	1'b0			keeps high or low level over 30ms.
,	-	1'b1	Enable	(Result can be read out by "Thermal Detection Mode" or
				"Rext Detection Mode")

Functional Descriptions (continued)

Image Data Format

16 bits of APDM/PWM data are transmitted into the 16-bit shift register, according to the format illustrated above. The first input bit is the most significant bit of each channel.

Data Transmitting Protocol

MODE0 (CMD[15]="0")

This data transmitting mode is comprised of 15 data latches and one global latch. The first data latch strobes image data for OUT[15]. The last global latch strobes image data for OUT[0] and loads all the image data of the 16 channels into the APDM/PWM generator. N is the number of devices in series.

MODE1 (CMD[15]="1")

This data transmitting mode is comprised of 16 data latches and one global latch. The first data latch strobes image data for OUT[15]. The last global latch loads all the image data of the 16 channels into the APDM/PWM generator, but does not strobe any image data for output channels. N is the number of devices in series.

Data Synchronization

The AL58263 can abate grayscale loss during the frame renewal by using auto synchronization. When the command bit CMD[10] is set to "0", this function can be executed automatically. After a global latch, all OUTs can accomplish a complete frame of old data and then update new frame data. Therefore, each frame maintains a fixed time and assigned grayscale. A controller just provides a free-running GCK for grayscale display in this mode.

Manual Synchronization (CMD[10]="1")

When the command bit CMD[10] is set to "1", the new frame data can be updated immediately. The old frame may lose a small amount of grayscale due to a non-complete frame time. In this mode, the controller must calculate carefully the number of GCKs in order to synchronize a frame.

Functional Descriptions (continued)

Adaptive Pulse Density Modulation with Δ-Width Correction

Adaptive Pulse Density Modulation (APDM) is a technique to improve output current waveform distortion and increase visual refresh rate. The adaptive output waveform is determined automatically by the grayscale value. When all outputs operate at high grayscale resolution (grayscale resolution \geq 50%), the output waveform is divided into 128 segments to increase visual refresh rate. Otherwise, the output waveform is divided into 64 segments at a low grayscale resolution to improve output current waveform distortion. The Δ -width correction ($\Delta \neq 0$) is used to compensate the non-ideal output current transient response.

When CMD[12]="0", the output waveform operates according to APDM. When CMD[12]="1", the output waveform is a form of non-scrambling PWM in order to drive high-power LEDs and decrease transient loss.

Functional Descriptions – Diagnosis and Protections

Error Detection Mode Instructions

Instruction Name	Number of DI Pulses when LAT is at High	Function Description
LED Open Detection	2	Execute the LED Open Detection no matter what the image data is. The image strobe will occur at the falling edge of LAT signal.
LED Short Detection	4	Execute the LED Short Detection no matter what the image data is. The image strobe will occur at the falling edge of LAT signal.
Short-to-GND Detection	6	Execute the Short-to-GND Detection no matter what the image data is. The device will detect each IOUT pin if short-to-ground or not. The image strobe will occur at the falling edge of LAT signal.
Thermal Detection & Watchdog Result Read Out	8	The device will load thermal detection result and watchdog detection result into the 16 th and 1 st image shift register by this instruction. The thermal error occurs when the junction temperature is over 155°C.
LED Smart Detection	10	Execute the LED Smart Detection no matter what the image data is. The device will detect LED Open and LED Short error simultaneously by this instruction. The image strobe will occur at the falling edge of LAT signal.
Sleep Mode	12	This instruction forces the device into Sleep Mode at the falling edge of LAT signal, then keeps GCK=high most internal circuits will shutdown. The device will be activated in the following LAT signal.
REXT Pin Detection & Watchdog Result Read Out	14	The device will load REXT detection result and watchdog detection result into the 16 th and 1 st image shift register by this instruction. The REXT error occurs when the REXT pin is short-to-GND or above 2.5V.

Error Bit

Error Bit	Symbol	Description
0		When errors, such as open errors, short errors, short-to-GND errors, and thermal errors (PreOTP), are detected in the channel, the error bit, zero, will be loaded into the corresponding image shift register.
1	Normal	In the detecting mode, the bit, one, will be loaded into the corresponding image shift register if the device is under normal operating conditions.

LED Open Error Detection

When the LED open error detection instruction is executed, it is necessary to input two DI pulses in Error Detection Mode. No matter what the image latch data is, the output ports of the AL58263 will turn on with 0.1mA for error detection. The detection time is defined from the falling edge of LAT to the rising edge of the following DCK.

When the voltage of the IOUT pins is below 0.3V, the error bit, zero, will be loaded into the corresponding image shift register. The error bit will be shifted out from the DO pin on the synchronization of the rising edge of DCK. A retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications.

LED Short Error Detection (Output Short-to-Power Included)

When the LED short error detection instruction is executed, it is necessary to input four DI pulses in the Error Detection Mode. No matter what the image latch data is, the output ports of the AL58263 will turn on with 0.1mA for error detection. The detection time is defined from the falling edge of LAT to the rising edge of the following DCK. When the voltage of the IOUT pins is above the threshold voltage of LED short detection, as determined by CMD[14:13], the error bit, zero, will be loaded into the corresponding image shift register. The error bit will be shifted out from the DO pin on the synchronization of the DCK's rising edge. And a retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications.

Short-to-GND Error Detection (Output Port Leakage Included)

When the short-to-GND error detection instruction is executed, it is necessary to input six DI pulses in Error Detection Mode. No matter what the image latch data is, this instruction forces the output ports of the AL58263 to turn off for error detection. The detection time is defined from the falling edge of LAT to the rising edge of the following DCK.

When the voltage of IOUT pins is below 0.3V, the error bit, zero, will be loaded into the corresponding image shift register. The error bit will be shifted out from the DO pin on the synchronization of the DCK's rising edge. And a retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications.

Pre-OTP Warning - Thermal Detection & Watchdog Result Read Out The AL58263 has a pre-thermal warning threshold of +155°C (typical).

When the thermal detection instruction is executed, it is necessary to input eight DI pulses in Error Detection Mode. The AL58263 will judge of junction temperature by instruction. If the junction temperature is over 155°C, it will lead to thermal error. The device will load the PreOTP and watchdog result into the 16th and 1st image shift register and fill out the other image shift registers with bit code, 1. The error report will be shifted out from the DO pin on the synchronization of the DCK's rising edge. And a retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications. When CMD[0]=1 and GCK keeps low or high over 30ms, the watchdog result can be "0", otherwise it would be "1".

LED Smart Detection

When the LED smart detection instruction is executed, it is necessary to input ten DI pulses in Error Detection Mode. No matter what the image latch data is, the output ports of the AL58263 will turn on with 0.1mA for error detection. The detection time is defined from the falling edge of LAT to the rising edge of the following DCK. When the voltage of the IOUT pins is below 0.3V for LED open detection or above the threshold voltage of LED short detection, as determined by CMD[14:13], the error bit, zero, will be loaded into the corresponding image shift register. The error bit will be shifted out from the DO pin on the synchronization of the DCK's rising edge. A retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications.

To save power, the AL58263 supports sleep mode to turn off most circuits. It is necessary to input twelve pulses in Error Detection Mode to execute this instruction, as well as keeping GCK=high at sleep mode. In this sleep mode, the supply current maintains < 0.1mA because most analog circuits are shutdown, but the digital interface is still activated in order to receive external digital data. Tue AL58263 will enter into sleep mode at the falling edge of this LAT signal and revive at the falling edge of the following LAT signal. The serial image data will be shifted out from the DO pin on the synchronization of the DCK's rising edge. A retiming DO signal, which is similar to aDI signal, appears when the LAT signal stays in a high level for cascading applications.

REXT Detection & Watchdog Result Read Out

When the REXT detection instruction is executed, it is necessary to input fourteen DI pulses in Error Detection Mode. The AL58263 will detect the voltage of the REXT pin by the instructions. If the REXT pin is open or above 2.5V or below 0.15V, it will lead to REXT error. The device will load the REXT report and watchdog the result into the 16th and 1st image shift register, as well as filling out the other image shift registers with bit code, 1. The error report will be shifted out from the DO pin on the synchronization of the DCK's rising edge. A retiming DO signal, which is similar to a DI signal, appears when the LAT signal stays in a high level for cascading applications. When CMD[0]=1 and GCK keeps low or high over 30ms, the watchdog result will be "0", otherwise it will be "1".

Power Dissipation

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation:

$$PD (practical) = V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Duty_{(0)} + \dots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Duty_{(N)}, where N=1 to 15$$

In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation, which is determined by package types and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD(max) = \frac{Tj(max)(\ \C) - Ta(\ \C)}{Rth(i-a)(\ \C/Watt)}$$

The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in the two different packages.

Maximum Power Dissipation v.s. Ambient Temperature

Design Tools (Note 16)

- AL58263EV1, AL58263EV2 Demo Board
- Demo Board Gerber File for PCB Layout Reference
- Design Calculator

Note: 16. Diodes' design tools can be found on our website at https://www.diodes.com/design/tools/.

Ordering Information

T24E:TSSOP-24EP DKZW24: W-QFN4040-24/SWP 13: Tape & Reel

Orderable Part Number	Poekago	Packing		
Orderable Part Nulliber	Package	Quantity	Carrier	Part Number Suffix
AL58263T24E-13	TSSOP-24EP (Type A1-B)	2,500	Tape and Reel	-13
AL58263DKZW24-13	W-QFN4040-24/SWP (Type A1)	3,000	Tape and Reel	-13

Marking Information

(1) Package: TSSOP-24EP (Type A1-B)

(2) Package: W-QFN4040-24/SWP (Type A1)

(Top View – Not to Scale)

• <u>XX</u> <u>Y W X</u>	XX : Identification Code Y : Year : 0~9 W : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents 52 and 53 week
	X : Internal Code

Orderable Part Number	Package	Identification Code
AL58263DKZW24-13	W-QFN4040-24/SWP (Type A1)	J7

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSSOP-24EP (Type A1-B)				
Dim	Min	Min Max Typ		
Α		1.20		
A1	0.00	0.15		
A2	0.80	1.05	1.00	
b	0.19	0.30		
С	0.09	0.20		
D	7.70	7.90	7.80	
D2	3.70	4.62		
E		6.40 BS0	C	
E1	4.30	4.50	4.40	
E2	2.28	2.85		
е	Ū	0.65 BS(C	
L	0.45	0.75	060	
L1	1.00 REF			
S	0.20			
θ	0°	8°		
All	Dimens	ions in r	nm	

W-QFN4040-24/SWP (Type A1)

W-QFN4040-24/SWP				
	(Тур	e A1)		
Dim	Min	Max	Тур	
Α	0.70	0.80	0.75	
A1	0.00	0.05	0.02	
A3	0	.203 F	REF	
b	0.18	0.30	0.25	
D	3.90	4.10	4.00	
D2	2.45	2.55	2.50	
E	3.90	4.10	4.00	
E2	2.45	2.55	2.50	
е	().50 B	SC	
k	0.20			
L	0.35	0.45	0.40	
All D	imens	ions i	n mm	

TSSOP-24EP (Type A1-B)

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	0.650
C1	5.600
Х	0.400
X1	4.225
Y	1.800
Y1	2.640

W-QFN4040-24/SWP (Type A1)

Dimensions	Value
С	0.500
Х	0.300
X1	0.750
X2	2.500
X3	3.850
Y	0.750
Y1	0.300
Y2	2.500
Y3	3.850

Tape and Reel Information

Please see https://www.diodes.com/assets/Packaging-Support-Docs/AP02007.pdf for tape and reel details.

Mechanical Data

Package: TSSOP-24EP (Type A1-B)

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)

• Weight: 0.096 grams (Approximate)

- Package: W-QFN4040-24/SWP (Type A1)
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per JESD22-B102 3
- Weight: 0.037 grams (Approximate)

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

Diodes' products are provided subject Diodes' Standard Terms and Conditions of to Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com