

Features

- Meets the TIA/EIA- 422-B requirements
- High speed, up to 50Mbps data rate, and t_{PLH} = t_{PHL} = 8 ns typical
- Low pulse distortion, t_{sk(p)} = 0.5 ns Typical
- Wide power supply voltage 3.0V to 5.5V
- High output-drive current: ±30 mA
- Low quiescent supply current: 30 uA typical
- Differential output voltage in 5.0V VCC
 3.9 V typical with 100-Ω Load
- Driver output short protection < 150mA
- Bus-Pin Protection:
 - ±18 kV HBM protection
 - ±9 kV IEC-Contact ESD
 - ±15 kV IEC-Air ESD
- Pb-Free
- Package: SOP16, TSSOP16

Description

3PEAK's TPT4031 is an enhanced RS422 device which meets standard TIA/EIA-422-B with strong ESD protection capability. The BUS-pin can pass \pm 18kV HBM-ESD, and \pm 15 kV IEC-Air ESD protection. It works in wide power supply range: from 3.0V to 5.5V VCC, which provides quad driver for balanced communication. It also features the larger output voltage and higher data rate, the TPT4031 can generate 3.9V differential output with 100- Ω Load and 50Mbps data rate in 5.0V power supply, required by high speed field-bus applications. The device can generate 30mA high output drive current, with short protect function in some abnormal operations, the clamp current is less than 150mA.

The TPT4031's enable functions can control all four drivers and provide an active-high (G) or active-low (/G) enable input, and they provide the high-impedance state in the power-off condition, which only consume 6uA very low current.

The TPT4031 is available in an SOP16, and TSSOP16 package, and is characterized from -40°C to 125°C.

Applications

- Field Transmitters: Temperature Sensors and Pressure Sensors
- Motor Controller/Position Encoder Systems
- Factory Automation
- Industrial/Process Control Networks

Functional block

Table of Contents

Features	1
Applications	1
Description	1
Functional block	1
Table of Contents	2
Revision History	
Pin Configuration and Functions	4
Pin Functions	
Absolute Maximum Ratings	5
ESD, Electrostatic Discharge Protection	6
Thermal Information	6
Electrical Characteristics	7
Electrical Characteristics (Continue)	
Test Circuits and Waveforms	
Theory of Operation	
Overview	
Function block diagram	
Feature Description	
Active-High in G and Active-Low in /G	
Power supply	
Device Functional Modes	
Application and Implementation	
Application Information	
Typical Application	14
Tape and Reel Information	15
Package Outline Dimensions	
SO3R (SOP16)	
Package Outline Dimensions	17
TS3R (TSSOP16)	
Order Information	
IMPORTANT NOTICE AND DISCLAIMER	

Revision History

Date	Revision	Notes
2020/11/18	Rev. Pre.0	Definition Version Pre.0
2021/6/30	Rev. A.0	Released version
2021/9/29	Rev. A.1	Updated VCC range in table of Recommended Operating Conditions
2021/12/16	Rev. A.2	Updated the order information

Pin Configuration and Functions

Pin Functions

Table 1.

Pin		I/O	Description
1D	1	1	Driver 1 input
1Y	2	0	Driver 1 output
1Z	3	0	Driver 1 inverted output
G	4	1	Active high enable
2Z	5	0	Driver 2 inverted output
2Y	6	0	Driver 2 output
2D	7	I	Driver 2 input
GND	8	_	Ground pin
3D	9	I	Driver 3 input
ЗY	10	0	Driver 3 output
3Z	11	0	Driver 3 inverted output
/G	12	I	Active low enable
4Z	13	0	Driver 3 inverted output
4Y	14	0	Driver 3 output
4D	15	I	Driver 3 input
VCC	16	_	Power pin

Absolute Maximum Ratings

Table 4.

Parameter	Description	Min	Мах	Unit
VCC	Supply voltage	-0.5	7	V
VI	Input voltage	-0.5	VCC + 0.5	V
Vo	Output voltage	-0.5	7	V
Ік	Input or output clamp current		±20	mA
Іок			120	IIIA
ю	Output current		±150	mA
	VCC current		200	mA
	GND current	-200		mA
TJ	Operating virtual junction temperature		150	°C
Tstg	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) This data was taken with the JEDEC low effective thermal conductivity test board.

(3) This data was taken with the JEDEC standard multilayer test boards.

Recommended Operating Conditions

Table 5.

Parameter	Description	Min	Мах	Unit
VCC	Supply voltage	3.0	5.5	V
Viн	High-level input voltage (driver, driver enable)	2	VCC	V
VIL	Low-level input voltage (driver, driver enable)	0	0.8	V
R∟	Differential load resistance	100		Ω
T _A	Operating ambient temperature	-40	125	°C

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

ESD, Electrostatic Discharge Protection

Table 2.

Symbol	Parameter	Condition	Minimum Level	Unit
IEC	IEC Contact Discharge	IEC-61000-4-2, Bus Pin	±9	kV
	IEC Air-Gap Discharge	IEC-61000-4-2, Bus Pin	±15	kV
НВМ	,HBM, per ANSI/ESDA/JEDEC JS-001 / ANSI/ESD STM5.5.1	ANSI/ESDA/JEDEC JS-001, Bus Pin	±18	kV
		ANSI/ESDA/JEDEC JS-001, All Pin Except Bus Pin	±7	kV
CDM	CDM, per ANSI/ESDA/JEDEC JS-002	ANSI/ESDA/JEDEC JS-002, All Pin	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) Test at the temperature of 25°CC .temperature

Thermal Information

Table 3.

Package Type	θ _{JA}	θ _{JC}	Unit
16-Pin TSSOP	115	48	°C/W
16-Pin SOP	91	31	°C/W

Note:

(1) Parameter is provided from 1S0P PCB per JEDEC standard.

(2) θ_{JA} , θ_{JC} data is only for reference by design simulation.

Electrical Characteristics

Typical value is in VCC = 5.0V, TA = +25°C, RL = 100 Ω to GND, unless otherwise noted.

Table 4.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Input Electri	cal Specifications					
VIK	Enable-input clamp voltage	I _o = 18 mA			-1.5	V
VIH	Logic Input High Voltage	Dx, G, /G	2.0			V
VIL	Logic Input Low Voltage	Dx, G, /G			0.8	V
Vон	High-level output voltage	I _o = -20 mA	2.4	4.6		V
Vol	Low-level output voltage	I _o = 20 mA		0.21	0.4	V
M	Differential output valtage magnitude	R_L = 100 Ω , see Figure 1	2.4	3.9		V
V _{OD}	Differential output voltage magnitude	No load, see Figure 1	4.0	5.0		V
	Change in magnitude of $V_{\text{OD}}^{(1)}$	R_L = 100 Ω, see Figure 1		0	±0.4	V
Δ V _{OD}		No load, see Figure 1		0	±0.4	V
V _{oc}	Common-mode output voltage	R_L = 100 Ω, see Figure 1		2.35	3.0	V
$\Delta V_{OC} $	Change in magnitude of V_{OC} ⁽¹⁾	R_L = 100 Ω, see Figure 1		0	±0.4	V
l _i	Input current	V ₁ = VCC or GND			±10	uA
IQ(off)	Driver euteut eurrent with newer off	VCC=0, V ₀ =6 V		6	50	uA
IO(off)	Driver output current with power off	VCC=0, V _o = -0.25 V		-6	-50	uA
		Bus pin Y, Z short current	-30		-150	mA
los	Driver output short-circuit current	Bus pin Y or Z short to V_0 = VCC or $GND^{(2)}$	-30		-150	mA
		V ₀ = 6 V			20	
loz	High-impedance off-state output current	V ₀ = -0.25 V			-100	uA uA
Icc	Quiescent supply current	I ₀ =0, V ₁ =0 or 5 V		30	50	uA
Ci	Input capacitance ⁽²⁾			12		pF

*Note:

(1). $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

(2). Provided by bench test and design simulation

AC Electrical Specifications

Typical value is in VCC = 5.0V, TA = +25°C, RL = 100 Ω to GND

Table 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tPLH	Propagation delay time, low-to-high- level output	SW is open, see Figure 2 ⁽¹⁾	3	8	12	ns
tPHL	Propagation delay time, high-to-low- level output		3	8	12	ns
tsk(p)	Pulse skew time (t _{PLH} – t _{PHL})	SW is open, see Figure 2		0.5	5	ns
tr	Differential output rise times			6.5	10	ns
tr	Differential output fall times	SW is open, see Figure 2		6.5	10	ns
tPZH	Output enable time to high level	SW is closed, see Figure 2		12	20	ns
tPZL	Output enable time to low level	SW is closed, see Figure 3		14	20	ns
tPHZ	Output disable time from high level	SW is closed, see Figure 2		9	20	ns
tPLZ	Output disable time from low level	SW is closed, see Figure 3		10	17	ns
Cpd	Power dissipation capacitance	VCC=5V, SW is open, see Figure 2 ⁽²⁾		260		pF

*Note:

(1). Provided by bench test and design simulation

(2). Reference IS = ICC + Cpd*VCC*f (f is input data rate), provided @1MHz (typical) by bench test

Electrical Characteristics (Continue)

Typical value is in VCC = 3.3V, TA = +25°C, RL = 100 Ω to GND, unless otherwise noted.

Table 10.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input Electric	cal Specifications		<u>.</u>			
VIK	Enable-input clamp voltage	I ₀ = 18 mA			-1.5	V
VIH	Logic Input High Voltage	Dx, G, /G	2.0			V
VIL	Logic Input Low Voltage	Dx, G, /G			0.8	V
Vон	High-level output voltage	I _o = -20 mA	2.0	2.9		V
Vol	Low-level output voltage	l _o = 20 mA		0.22	0.4	V
M		R_L = 100 Ω , see Figure 1	1.9	2.5		V
V _{OD}	Differential output voltage magnitude	No load, see Figure 1	2.5	3.27		V
	Change in magnitude of V _{OD} ⁽¹⁾	R_L = 100 Ω , see Figure 1		0	±0.4	V
$\Delta V_{OD} $		No load, see Figure 1		0	±0.4	V
V _{oc}	Common-mode output voltage	R_L = 100 Ω , see Figure 1		1.54	2.0	V
$\Delta V_{OC} $	Change in magnitude of $V_{\text{OC}}^{(1)}$	R_L = 100 Ω , see Figure 1		0	±0.4	V
I _I	Input current	V ₁ = VCC or GND			±10	uA

IO(off)	Driver output current with power off	VCC=0, V ₀ = 6 V		6	50	uA
10(011)		VCC=0, V ₀ = -0.25 V		-6	-50	uA
		Bus pin Y, Z short current	-30		-150	mA
los E	Driver output short-circuit current	Bus pin Y or Z short to V_0 = VCC or $GND^{(2)}$	-30		-150	mA
loz	High-impedance off-state output current	V _o =6 V			20	uA
102		V ₀ = -0.25 V			-100	
Icc	Quiescent supply current	I ₀ =0, V ₁ =0 or 3.3 V		20	40	uA
C _i	Input capacitance ⁽⁵⁾			12		pF

*Note:

(1). $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

(2). Provided by bench test and design simulation

AC Electrical Specifications

Typical value is in VCC = 3.3V, TA = +25°C, RL = 100 Ω to GND, unless otherwise noted.

Table 11.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tPLH	Propagation delay time, low-to-high- level output	SW is open, see Figure 2	3	8	12	ns
tPHL	Propagation delay time, high-to-low- level output		3	8	12	ns
tsk(p)	Pulse skew time (t _{PLH} - t _{PHL})	SW is open, see Figure 2 ⁽¹⁾		0.5	5	ns
tr	Differential output rise times	SW is open, see Figure 2 ⁽¹⁾		6.5	10	ns
tr	Differential output fall times			6.5	10	ns
tPZH	Output enable time to high level	CW/ is closed one Figure 2		13.5	23	ns
tPZL	Output enable time to low level	SW is closed, see Figure 3		16.5	23	ns
tPHZ	Output disable time from high level	SW/ in already and Figure 2		11	23	ns
tPLZ	Output disable time from low level	SW is closed, see Figure 3		14	23	ns
Cpd	Power dissipation capacitance	SW is open, see Figure 2 ⁽²⁾		112		pF

*Note:

(1). Parameter is provided by lab bench test and design simulation

(2). Reference IS = ICC + Cpd*VCC*f (f is input data rate), provided @1MHz (typical) by bench test

Test Circuits and Waveforms

Figure 1 VOD & VOC with Common Mode Load

Figure 2A. Driver Propagation Delay and Differential Transition Times -- Test Circuit

 $SKEW = |t_{PLH} - t_{PHL}|$

Figure 2B. Driver Propagation Delay and Differential Transition Times Measurement Points

Figure 3A. Driver Enable and Disable Times -- Test Circuit

Figure 3B. Driver Enable and Disable Times -- Measurement Points

Theory of Operation

Overview

3PEAK's TPT4031 is a quad differential driver, which is designed to meet the requirements of TIA/EIA-422-B, and it usually communicates over the long wires in field bus applications. The TPT4031 have the strong ESD protection capability, the BUS-pin can pass ± 18 kV HBM-ESD, and ± 9 kV IEC-Contact ESD protection. It works in wide power supply range: from 3.0V to 5.5V VCC, which provides quad driver for balanced communication. It also features the larger output voltage and higher data rate, the TPT4031 can generate 3.9V differential output with 100- Ω Load and 50Mbps data rate in 5.0V power supply, required by high speed field-bus applications. The device can generate 30mA high output drive current, with short protect function in some abnormal operations, the clamp current is less than 150mA. In the high-impedance state with power-off condition, TPT4031 only consumes 6uA very low current.

Function block diagram

Figure 4. Function block diagram

Feature Description

Active-High in G and Active-Low in /G

The G and /G logic inputs can configure the device to select transmitter output status, and set a logic high on the G pin or a logic low on the /G pin to enable the device in normal operation mode, and it is easy to configure the logic from a controller or microprocessor.

Power supply

Both the logic and transmitters operate from a single power supply in wide range: $3.0 \sim 5.5$ V, making designs much more easily. The line quad drivers can operate off the same rail as the host controller or a similar low voltage supply, thus simplifying power structure. The 5.0V power supply is recommended to get better performance, especially in high data rate up-to 50Mbps.

Device Functional Modes

Table 12.

Input	Ena	ables	Outputs		
D	G	/G	Y	z	
Н	Н	х	н	L	
L	Н	х	L	Н	
Н	Х	L	н	L	
L	Х	L	L	Н	
Х	L	Н	Z	Z	

Note:

H = High level,

L = Low level,

X = Irrelevant,

Z = High impedance (off)

Application and Implementation

Application Information

A typical system usually contain the drivers, receivers, and transceivers complied with RS-422, to reduce reflections in the transmission line, requires the proper cable termination for highly reliable applications. Only one driver on the bus is allowed per RS422 standard, as termination is used in circuit and it is usually placed at the end of the cable near the last receiver. In order to get the good performance and low cost of the application, and decide the type of termination. The different types of termination are unterminated lines, parallel termination, AC termination, and multipoint termination. For laboratory experiments, around 50 meter of $100-\Omega$, twisted-pair cable, a single driver and receiver, 3PEAK TPT4031 and TPT4032 were tested at room temperature with in 5.0V supply voltage.

Typical Application

Figure 6. Typical application reference circuit

Resistor and capacitor termination values are shown for each lab experiment, but vary from different system. For example, the termination resistor, R_T , must be within 20% of the characteristic impedance, Zo, of the cable and can vary from about 80 Ω to 120 Ω .

Place 0.1µF bypass capacitors is required close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies.

Tape and Reel Information

Order Number	Package	D1	A0	K0	WO	W1	B0	P0	Pin1 Quadrant
TPT4031-SO3R	SOP16	330	6.7	2.1	16.0	21.6	10.4	8.0	Q1
TPT4031-TS3R	TSSOP16	330	6.8	1.7	12.0	17.6	5.4	8.0	Q1

Package Outline Dimensions

SO3R (SOP16)

Package Outline Dimensions

TS3R (TSSOP16)

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT4031-SO3R	-40 to 125°C	16-Pin SOP	T4031	MSL3	Tape and Reel, 2500	Green
TPT4031-TS3R	-40 to 125°C	16-Pin TSSOP	T4031	MSL3	Tape and Reel, 3000	Green

(1) Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.