

S-8209B Series

BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION

© ABLIC Inc., 2008-2019

www.ablic.com

The S-8209B Series is a protection IC for lithium-ion / lithium polymer rechargeable batteries and includes a high-accuracy voltage detection circuit and a delay circuit.

The S-8209B Series has a transmission function and two types of cell-balance function so that users are also able to configure a protection circuit with series multi-cell.

Features

- High-accuracy voltage detection circuit Overcharge detection voltage*1 3.55 V to 4.40 V (5 mV step) Accuracy ±25 mV Overcharge release voltage*1 3.50 V to 4.40 V*2 Accuracy ±50 mV Cell-balance detection voltage*1 3.55 V to 4.40 V (5 mV step)*3 Accuracy ±25 mV Cell-balance release voltage*1 3.50 V to 4.40 V*4 Accuracy ±50 mV Overdischarge detection voltage 2.0 V to 3.0 V (10 mV step) Accuracy ±50 mV Accuracy ±100 mV Overdischarge release voltage 2.0 V to 3.4 V*5 Settable delay time by external capacitor for output pin
- Control charging, discharging, cell-balance by CTLC pin, CTLD pin
- Two types of cell-balance function; charge / discharge*6
- Wide range of operation temperature $Ta = -40^{\circ}C$ to $+85^{\circ}C$
- Low current consumption
- Lead-free, Sn 100%, halogen-free*7
 - *1. Regarding selection of overcharge detection voltage, overcharge release voltage, cell-balance detection voltage and cell-balance release voltage, refer to Remark 3 in "3. Product name list" of "
 Product Name Structure".
 - *2. Overcharge release voltage = Overcharge detection voltage Overcharge hysteresis voltage (Overcharge hysteresis voltage is selectable in 0 V to 0.4 V in 50 mV step.)

7.0 μA max.

- *3. Select as to overcharge detection voltage > cell-balance detection voltage.
- *4. Cell-balance release voltage = Cell-balance detection voltage Cell-balance hysteresis voltage (Cell-balance hysteresis voltage is selectable in 0 V to 0.4 V in 50 mV step.)
- ***5.** Overdischarge release voltage = Overdischarge detection voltage + Overdischarge hysteresis voltage (Overdischarge hysteresis voltage is selectable in 0 V to 0.7 V in 100 mV step.)
- *6. Also available the product without discharge cell-balance function
- *7. Refer to "■ Product Name Structure" for details.

Applications

- Lithium-ion rechargeable battery pack
- Lithium polymer rechargeable battery pack

Packages

- SNT-8A
- 8-Pin TSSOP

Rev.3.8_00

Block Diagram

Remark The diodes in the IC are parasitic diodes.

Figure 1

Product Name Structure

- 1. Product name
 - 1.1 8-Pin TSSOP

*1. Refer to the tape drawing.

*1. Refer to the tape drawing.

2. Packages

Table 1 Package Drawing Codes

Package Name		Dimension	Таре	Reel	Land
	Environmental code = S	FT008-A-P-SD	FT008-E-C-SD	FT008-E-R-SD	
8-Pin TSSOP	Environmental code = U	FT008-A-P-SD	FT008-E-C-SD	FT008-E-R-S1	-
SNT-8A		PH008-A-P-SD	PH008-A-C-SD	PH008-A-R-SD	PH008-A-L-SD

Rev.3.8_00

3. Product name list

3.1 8-Pin TSSOP

	-		Table 2	2			
Product Name	Overcharge Detection Voltage (Vcu)	Overcharge Release Voltage (V _{CL})	Cell-balance Detection Voltage (V _{BU})	Cell-balance Release Voltage (V _{BL})	Overdischarge Detection Voltage (V _{DL})	Overdischarge Release Voltage (V _{DU})	Discharge Cell-balance Function
S-8209BAA-T8T1y	4.100 V	4.000 V	4.050 V	4.000 V	2.50 V	2.70 V	Yes
S-8209BAD-T8T1y	4.150 V	3.950 V	3.900 V	3.900 V	2.00 V	2.70 V	Yes
S-8209BAG-T8T1y	3.800 V	3.650 V	3.700 V	3.700 V	2.20 V	2.50 V	No
S-8209BAH-T8T1y	4.250 V	4.150 V	4.200 V	4.200 V	2.50 V	2.80 V	No
S-8209BAI-T8T1y	4.250 V	4.150 V	4.100 V	4.050 V	2.50 V	2.70 V	Yes
S-8209BAJ-T8T1y	4.150 V	3.950 V	3.900 V	3.900 V	2.30 V	3.00 V	No
S-8209BAK-T8T1y	4.215 V	4.215 V	4.190 V	4.190 V	2.00 V	2.50 V	Yes
S-8209BAL-T8T1y	4.300 V	4.100 V	4.225 V	4.225 V	2.00 V	2.50 V	Yes
S-8209BAN-T8T1U	4.250 V	4.150 V	4.200 V	4.200 V	2.00 V	2.10 V	No
S-8209BAO-T8T1U	4.300 V	4.200 V	4.200 V	4.200 V	2.30 V	3.00 V	No
S-8209BAP-T8T1U	3.900 V	3.900 V	3.700 V	3.700 V	2.00 V	2.50 V	Yes
S-8209BAU-T8T1U	4.225 V	4.175 V	4.215 V	4.165 V	2.30 V	3.00 V	Yes
S-8209BAW-T8T1U	4.225 V	4.175 V	4.215 V	4.165 V	2.30 V	3.00 V	No
S-8209BAX-T8T1U	4.210 V	4.160 V	4.190 V	4.140 V	2.50 V	3.20 V	No
S-8209BAY-T8T1U	4.210 V	4.160 V	4.190 V	4.140 V	2.50 V	3.00 V	No
S-8209BAZ-T8T1U	4.195 V	4.145 V	4.100 V	4.050 V	2.50 V	2.70 V	No
S-8209BBA-T8T1U	3.700 V	3.500 V	3.550 V	3.550 V	2.00 V	2.50 V	Yes
S-8209BBB-T8T1U	4.275 V	4.225 V	4.145 V	4.095 V	2.00 V	2.30 V	No
S-8209BBC-T8T1U	4.200 V	4.100 V	4.145 V	4.095 V	2.00 V	2.30 V	No

3.2 SNT-8A

	Table 3						
Product Name	Overcharge Detection Voltage (V _{CU})	Overcharge Release Voltage (V _{CL})	Cell-balance Detection Voltage (V _{BU})	Cell-balance Release Voltage (V _{BL})	Overdischarge Detection Voltage (V _{DL})	Overdischarge Release Voltage (V _{DU})	Discharge Cell-balance Function
S-8209BAA-I8T1U	4.100 V	4.000 V	4.050 V	4.000 V	2.50 V	2.70 V	Yes
S-8209BAM-I8T1U	4.000 V	3.800 V	3.900 V	3.850 V	3.00 V	3.40 V	No
S-8209BAO-I8T1U	4.300 V	4.200 V	4.200 V	4.200 V	2.30 V	3.00 V	No
S-8209BAP-I8T1U	3.900 V	3.900 V	3.700 V	3.700 V	2.00 V	2.50 V	Yes
S-8209BAR-I8T1U	4.230 V	4.170 V	4.180 V	4.180 V	2.80 V	3.00 V	No

Remark 1. y: S or U

2. Please select products of environmental code = U for Sn 100%, halogen-free products.

 Please contact our sales representatives for products other than the above. Users are able to select the overcharge detection voltage, overcharge release voltage, cell-balance detection voltage and cell-balance release voltage from the range shown in Figure 2 and Figure 3. Users are able to select how to combine the overcharge detection voltage (V_{CU}) and the overcharge release voltage (V_{CL}) from the range A or B shown in Figure 2*1.

Similarly, select how to combine the cell-balance detection voltage (V_{BU}) and the cell-balance release voltage (V_{BL}) from the range of C or D in **Figure 3**^{*2}.

In selecting the combination of V_{CU} and V_{CL} from the range A, select the combination of V_{BU} and V_{BL} from the range C. Similarly, in selecting the combination of V_{CU} and V_{CL} from the B range, select the combination of V_{BU} and V_{BL} from the range D^{*3}.

Figure 2

Figure 3

- *1. Users are able to select the overcharge hysteresis voltage ($V_{CU} V_{CL}$) in 0 V to 0.4 V, in 50 mV step.
- *2. Users are able to select the cell-balancce hysteresis voltage ($V_{BU} V_{BL}$) in 0 V to 0.4 V, in 50 mV step.
- *3. Select as to set $V_{CU} > V_{BU}$.

Pin Configurations

1. 8-Pin TSSOP

Figure 4

Table 4					
Pin No.	Symbol	Description			
1	CTLC	Pin for charge control			
2	CTLD	Pin for dischage control			
3	VDD	Input pin for positive power supply; Connection pin for battery's positive voltage			
4	CDT	Capacitor connection pin for overcharge detection delay, cell-balance detection delay and overdischarge detection delay			
5	VSS	Input pin for negative power supply; Connection pin for batter's negative voltage			
6	DO	Output pin for discharge control (Pch open-drain output)			
7	со	Output pin for charge control (Pch open-drain output)			
8	СВ	Output pin for cell-balance control (CMOS output)			

2. SNT-8A

Figure 5

Table 5					
Pin No.	Symbol	Description			
1	CTLC	Pin for charge control			
2	CTLD	Pin for dischage control			
3	VDD	Input pin for positive power supply; Connection pin for battery's positive voltage			
4	CDT	Capacitor connection pin for overcharge detection delay, cell-balance detection delay and overdischarge detection delay			
5	VSS	Input pin for negative power supply; Connection pin for battery's negative voltage			
6	DO	Output pin for discharge control (Pch open-drain output)			
7	со	Output pin for charge control (Pch open-drain output)			
8	СВ	Output pin for cell-balance control (CMOS output)			

Table 5

Absolute Maximum Ratings

				(Ta = +25°C unless otherwise spe	ecified)
Item		Symbol	Applied pin	Absolute Maximum Rating	Unit
Input voltage betwee	n VDD and VSS	V _{DS}	VDD	V _{SS} – 0.3 to V _{SS} + 12	V
CB pin output voltage	;	Vcb	СВ	V _{SS} – 0.3 to V _{DD} + 0.3	V
CDT pin voltage		VCDT	CDT	V _{SS} – 0.3 to V _{DD} + 0.3	V
DO pin output voltage		VDO	DO	V _{DD} – 24 to V _{DD} + 0.3	V
CO pin output voltage	9	Vco	СО	V _{DD} – 24 to V _{DD} + 0.3	V
CTLC pin input voltage	je	VCTLC	CTLC	$V_{SS} - 0.3$ to $V_{SS} + 24$	V
CTLD pin input voltage		VCTLD	CTLD	$V_{SS} - 0.3$ to $V_{SS} + 24$	V
Dewer dissinction	8-Pin TSSOP	_		700 ^{*1} r	mW
Power dissipation	SNT-8A	PD	_	450 ^{*1} r	mW
Operating ambient temperature		T _{opr}	_	-40 to +85	°C
Storage temperature		T _{stg}	_	–55 to +125	°C

Table 6

*1. When mounted on board

[Mounted board]

(1) Board size: $114.3 \text{ mm} \times 76.2 \text{ mm} \times t1.6 \text{ mm}$

(2) Board name: JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Figure 6 Power Dissipation of Package (When mounted on board)

Rev.3.8_00

Electrical Characteristics

		Table		(Ta = +2	25°C unless oth	erwise s	pecified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Overcharge detection voltage	V _{CU}	_	$V_{\text{CU}}-0.025$	Vcu	V _{CU} + 0.025	V	1
Overcharge release	Vcl	V _{CL} ≠ V _{CU}	$V_{\text{CL}}-0.05$	Vcl	V _{CL} + 0.05	V	1
voltage	VCL	V _{CL} = V _{CU}	$V_{\text{CL}}-0.05$	Vcl	$V_{\text{CL}} + 0.025$	V	1
Cell-balance detection voltage	V_{BU}	-	$V_{\text{BU}}-0.025$	V _{BU}	$V_{\text{BU}} + 0.025$	V	1
Cell-balance release	V	$V_{BL} \neq V_{BU}$	$V_{BL}-0.05$	V _{BL}	$V_{BL} + 0.05$	V	1
voltage	V_{BL}	$V_{BL} = V_{BU}$	$V_{\text{BL}}-0.05$	V _{BL}	$V_{BL} + 0.025$	V	1
Overdischarge detection voltage	V _{DL}	_	$V_{\text{DL}} - 0.05$	V _{DL}	V _{DL} + 0.05	V	1
Overdischarge release voltage	V _{DU}	-	$V_{\text{DU}}-0.10$	V _{DU}	V _{DU} + 0.10	V	1
CDT pin resistance*1	R _{CDT}	V_{DS} = 3.5 V, V_{CDT} = 0 V	4.76	8.31	10.9	MΩ	2
CDT pin detection voltage ^{*1}	V _{CDET}	V _{DS} = 3.5 V	$V_{\text{DS}} \times 0.65$	$V_{DS} imes 0.70$	$V_{\text{DS}} \times 0.75$	V	3
Operating voltage between VDD and VSS	V _{DSOP}	Output voltage of CO pin, DO pin and CB pin are determined	1.5	_	8.0	V	_
CTLC pin H voltage	VCTLCH	V _{DS} = 3.5 V	$V_{\text{DS}} \times 0.55$	_	$V_{\text{DS}} \times 0.90$	V	4
CTLD pin H voltage	VCTLDH	V _{DS} = 3.5 V	$V_{\text{DS}} \times 0.55$	_	$V_{\text{DS}} \times 0.90$	V	4
CTLC pin L voltage	VCTLCL	V _{DS} = 3.5 V	$V_{\text{DS}} \times 0.10$	_	$V_{\text{DS}} imes 0.45$	V	4
CTLD pin L voltage	V _{CTLDL}	V _{DS} = 3.5 V	$V_{\text{DS}} \times 0.10$	-	$V_{DS} imes 0.45$	V	4
Current consumption during operation*2	I _{OPE}	V _{DS} = 3.5 V	_	3.5	7.0	μA	5
Sink current CTLC*2	ICTLCL	V_{DS} = 3.5 V, V_{CTLC} = 3.5 V	320	400	480	nA	6
Sink current CTLD*2	ICTLDL	V _{DS} = 3.5 V, V _{CTLD} = 3.5 V	320	400	480	nA	6
Source current CB	I _{CBH}	V_{CB} = 4.0 V, V_{DS} = 4.5 V	30	_	-	μA	7
Sink current CB	I _{CBL}	V_{CB} = 0.5 V, V_{DS} = 3.5 V	30	-	-	μA	7
Source current CO	I _{COH}	V _{CO} = 3.0 V, V _{DS} = 3.5 V	30	_	-	μA	7
Leakage current CO	I _{COL}	V _{CO} = 24 V, V _{DS} = 4.5 V	_	_	0.1	μA	8
Source current DO	I _{DOH}	V _{DO} = 3.0 V, V _{DS} = 3.5 V	30	_	-	μA	7
Leakage current DO	IDOL	V _{DO} = 24 V, V _{DS} = 1.8 V	-	_	0.1	μA	8

Table 7

*1. In the S-8209B Series, users are able to set delay time for the output pins. By using the following formula, delay time is calculated with the value of CDT pin's resistance in the IC (R_{CDT}) and the value of capacitor set externally at the CDT pin (C_{CDT}).

$$\begin{split} t_{D}\left[s\right] &= -In\left(1{-}V_{CDET} \; / \; V_{DS}\right) \times C_{CDT}\left[\mu F\right] \times R_{CDT}\left[M\Omega\right] \\ &= -In\left(1{-}0.7\; (typ.)\;\right) \times C_{CDT}\left[\mu F\right] \times 8.31\; M\Omega\; (typ.) \\ &= 10.0\; M\Omega\; (typ.) \times C_{CDT}\left[\mu F\right] \end{split}$$

In case of the capacitance of CDT pin C_{CDT} = 0.01 μ F, the output pin delay time t_D is calculated by using the above formula and as follows.

 $t_D[s] = 10.0 M\Omega (typ.) \times 0.01 \mu F = 0.1 s (typ.)$

Test R_{CDT} and the CDT pin detection voltage (V_{CDET}) by test circuits shown in this datasheet after applying the power supply while pulling-up the CTLC pin, CTLD pin to the level of VDD pin outside the IC.

*2. In case of using CTLC pin, CTLD pin pulled-up to the level of VDD pin externally, the current flows from the VSS pin (Iss) is calculated by the following formula.

 $I_{SS} = I_{OPE} + I_{CTLCL} + I_{CTLDL}$

Test Circuits

Figure 7 Test circuit 1

Figure 9 Test circuit 3

Figure 11 Test circuit 5

Figure 8 Test circuit 2

BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION S-8209B Series

Figure 14 Test circuit 8

Operation

Figure 15 shows the operation transition of the S-8209B Series

Figure 15 Operation Transition

1. Normal status

In the S-8209B Series, both of CO and DO pin get the V_{DD} level; the voltage between VDD and VSS (V_{DS}) is more than the overdischarge detection voltage (V_{DL}), and is less than the overcharge detection voltage (V_{CU}) and respectively, the CTLC pin input voltage (V_{CTLC}) > the CTLC pin voltage "L" (V_{CTLCL}), the CTLD pin input voltage (V_{CTLD}) > the CTLD pin voltage "L" (V_{CTLDL}). This is the normal status.

2. Overcharge status

In the S-8209B Series, the CO pin is in high impedance; when V_{DS} gets V_{CU} or more, or V_{CTLC} gets V_{CTLCL} or less. This is the overcharge status.

If V_{DS} gets the overcharge release voltage (V_{CL}) or less, and V_{CTLC} gets the CTLC pin voltage "H" (V_{CTLCH}) or more, the S-8209B Series releases the overcharge status to return to the normal status.

3. Overdischarge status

In the S-8209B Series, the DO pin is in high impedance; when V_{DS} gets V_{DL} or less, or V_{CTLD} gets V_{CTLDL} or less. This is the overdischarge status.

If V_{DS} gets the overdischarge release voltage (V_{DU}) or more, and V_{CTLD} gets the CTLD pin voltage "H" (V_{CTLDH}) or more, the S-8209B Series releases the overdischarge status to return to the normal status.

4. Cell-balance function

In the S-8209B Series, the CB pin gets the level of VDD pin; when V_{DS} gets the cell-balance detection voltage (V_{BU}) or more. This is the charge cell-balance function.

If V_{DS} gets the cell-balance release voltage (V_{BL}) or less again, the S-8209B Series sets the CB pin the level of VSS pin.

In addition, the CB pin gets the level of VDD pin; when V_{DS} is more than V_{DL} , and V_{CTLD} is V_{CTLDL} or less. This is the discharge cell-balance function.

If V_{CTLD} gets V_{CTLDH} or more, or V_{DS} is V_{DL} or less again, the S-8209B Series sets the CB pin the level of VSS pin.

5. Delay circuit

In the S-8209B Series, users are able to set delay time which is from detection of changes in V_{DS} , V_{CTLC} , V_{CTLD} to output to the CO, DO, CB pin.

For example in the detection of overcharge status, when V_{DS} exceeds V_{CU} , or V_{CTLC} gets V_{CTLCH} or less, charging to C_{CDT} starts via R_{CDT} . If the voltage between CDT and VSS (V_{CDT}) reaches the CDT pin detection voltage (V_{CDET}), the CO pin is in high impedance. The output pin delay time t_D is calculated by the following formula.

 $t_D[s] = 10.0 \text{ M}\Omega \text{ (typ.)} \times C_{CDT}[\mu F]$

The electric charge in C_{CDT} starts to be discharged when the delay time has finished. The delay time that users have set for the CO pin, as seen above, is settable for each output pin DO, CB.

Battery Protection IC Connection Examples

Regarding the operation of protection circuit with the S-8209B Series for series-connected batteries, refer to the application note "S-8209B Series Usage Guidelines".

1. Example of Protection Circuit with the S-8209B Series (Without Discharge Cell-balance Function) for Series Multi-Cells

Figure 16 shows the example of protection circuit with the S-8209B Series (without discharge cell-balance function) for series multi-cells.

Figure 16

2. Example of Protection Circuit with the S-8209B Series (With Discharge Cell-balance Function) for Series Multi-Cells

Figure 17 shows the example of protection circuit with the S-8209B Series (with discharge cell-balance function) for series multi-cells.

Figure 17

Caution 1. The constants may be changed without notice.

2. It has not been confirmed whether the operation is normal or not in circuits other than the connection examples. In addition, the connection examples and the constants do not guarantee proper operation. Perform thorough evaluation using the actual application to set the constants.

Precautions

- The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- ABLIC Inc. claims no responsibility for any and all disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

Rev.3.8_00

■ Characteristics (Typical Data)

1. Current consumption

- 2. Overcharge detection / release voltages, Cell-balance detection / release voltages, Overdischarge detection / release voltages
 - 2.1 V_{CU} vs. Ta

2. 5 VDU vs. Ta

2. 2 V_{CL} vs. Ta

3. CO / DO / CB pin current

4. CTLC / CTLD pin current

5.1 RCDT vs. Ta

3. 4 ICBL VS. VCB (VDS = 3.5 V)

4. 2 ICTLDL VS. Ta (VDS = 3.5 V)

No. FT008-A-P-SD-1.2

TITLE	TSSOP8-E-PKG Dimensions		
No.	FT008-A-P-SD-1.2		
ANGLE	\oplus		
UNIT	mm		
ABLIC Inc.			

ABLIC Inc.

ABLIC Inc.

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07