

Low Noise, Micropower 5.0 V Precision Voltage Reference

FEATURES

- ▶ 6.0 V to 15 V supply range
- Supply current: 15 μA maximum
- Low noise: 15 μV p-p typical (0.1 Hz to 10 Hz)
- ▶ High output current: 5 mA
- ▶ Pin-compatible with the REF02/REF19x

ENHANCED PRODUCT FEATURES

- Supports defense and aerospace applications (AQEC standard)
- ▶ Military temperature range (-55°C to +125°C)
- ► Controlled manufacturing baseline
- ▶ 1 assembly/test site
- ▶ 1 fabrication site
- Product change notification
- Qualification data available on request

APPLICATIONS

- Portable instrumentation
- ▶ Precision reference for 5 V systems
- ▶ ADC and DAC reference
- Solar-powered applications

GENERAL DESCRIPTION

The ADR293-EP is a low noise, micropower precision voltage reference that utilizes an XFET® (eXtra implanted junction FET) reference circuit. The XFET architecture offers significant performance improvements over traditional band gap and buried Zener-based references. Improvements include one quarter the voltage noise output of band gap references operating at the same current, very low and ultralinear temperature drift, low thermal hysteresis, and excellent long-term stability.

The ADR293-EP is a series voltage reference providing stable and accurate output voltage from a 6.0 V supply. Quiescent current is only 15 µA maximum, making this device ideal for battery pow-

PIN CONFIGURATION

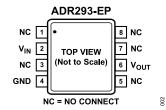


Figure 1. 8-Lead TSSOP (RU-8)

ered instrumentation. The temperature coefficient is 30 ppm/°C maximum over the military temperature range, and the initial error is only 0.2% at 25°C. Line regulation and load regulation are typically 70 ppm/V and 30 ppm/mA, respectively, maintaining the reference's overall high performance.

The ADR293-EP is specified over the military temperature range of –55°C to +125°C. This device is available in an 8-lead TSSOP package.

Additional applications information is available in the ADR293 data sheet.

TABLE OF CONTENTS

Features	1	Thermal Resistance	4
Enhanced Product Features	1	ESD Caution	4
Applications	1	Typical Performance Characteristics	5
Pin Configuration	1	Outline Dimensions	8
General Description	1	Ordering Guide	8
Specifications	3	Output Voltage, Initial Accuracy, and	
Electrical Specifications	3	Temperature Coefficient Options	8
Absolute Maximum Ratings	4		
REVISION HISTORY			
10/2024—Rev. A to Rev. B			
Changes to T Grade, Line Regulation	Parameter, Tabl	e 1	3
Changes to Supply Current Parameter	, Table 3		3

analog.com Rev. B | 2 of 8

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

 V_S = 6.0 V, T_A = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
OUTPUT VOLTAGE	V _{OUT}	I _{OUT} = 0 mA				
T Grade			4.990	5.000	5.010	V
INITIAL ACCURACY		I _{OUT} = 0 mA				
T Grade			-10		+10	mV
					0.20	%
LINE REGULATION	$\Delta V_{OUT} / \Delta V_{IN}$	6.0 V to 15 V, I _{OUT} = 0 mA				
T Grade				40	150	ppm/V
LOAD REGULATION	$\Delta V_{OUT} / \Delta I_{LOAD}$	$V_S = 6.0 \text{ V}, I_{OUT} = 0 \text{ mA to 5 mA}$				
T Grade				40	150	ppm/mA
LONG-TERM STABILITY	ΔV _{OUT}	After 1000 hours of operation @ 125°C		50		ppm
VOLTAGE NOISE	e _{N p-p}	f = 0.1 Hz to 10 Hz		15		μV p-p
VOLTAGE NOISE DENSITY	e _N	f = 1 kHz		640		nV/√Hz

 V_S = 6.0 V, T_A = –25°C to +85°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT	TCV _{OUT}	I _{OUT} = 0 mA				
T Grade				10	25	ppm/°C
LINE REGULATION	ΔV _{OUT} /ΔV _{IN}	6.0 V to 15 V, I _{OUT} = 0 mA				
T Grade				50	200	ppm/V
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	V _S = 6.0 V, I _{OUT} = 0 mA to 5 mA				
T Grade				30	200	ppm/mA

 V_S = 6.0 V, T_A = –55°C to +125°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
TEMPERATURE COEFFICIENT	TCV _{OUT}	I _{OUT} = 0 mA				
T Grade				10	30	ppm/°C
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	6.0 V to 15 V, I _{OUT} = 0 mA				
T Grade				70	250	ppm/V
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	V _S = 6.0 V, 0 mA to 5 mA				
T Grade				30	300	ppm/mA
SUPPLY CURRENT	Is	@ 25°C		11	15	μA
		@ 125°C		15	20	μA
THERMAL HYSTERESIS	V _{OUT-HYS}					
T Grade				157		ppm

analog.com Rev. B | 3 of 8

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	18 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	-55°C to +125°C
Junction Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for worst-case conditions; that is, θ_{JA} is specified for the device in socket testing. In practice, θ_{JA} is specified for the device soldered in a circuit board.

Table 5. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
8-Lead TSSOP (RU-8)	240	43	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. B | 4 of 8

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted.

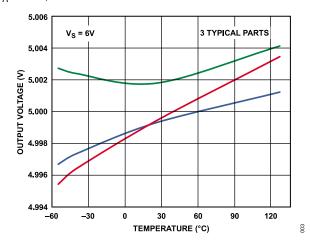


Figure 2. V_{OUT} vs. Temperature

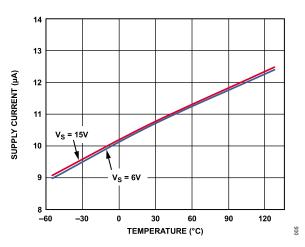


Figure 3. Supply Current vs. Temperature

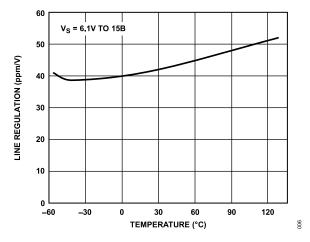


Figure 4. Line Regulation vs. Temperature

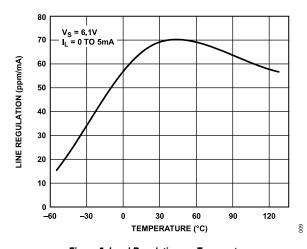


Figure 5. Load Regulation vs. Temperature

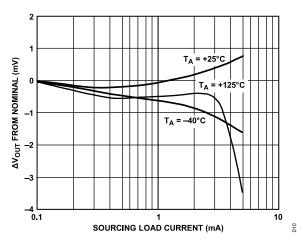


Figure 6. ΔV_{OUT} from Nominal vs. Load Current

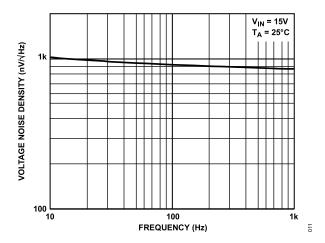


Figure 7. Voltage Noise Density vs. Frequency

analog.com Rev. B | 5 of 8

TYPICAL PERFORMANCE CHARACTERISTICS

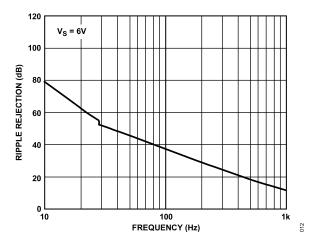


Figure 8. Ripple Rejection vs. Frequency

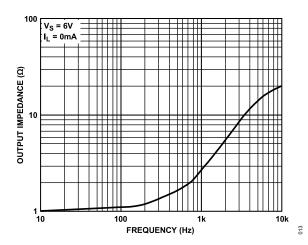


Figure 9. Output Impedance vs. Frequency

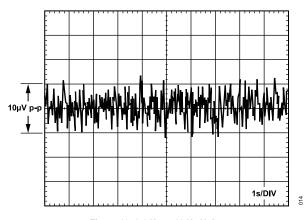


Figure 10. 0.1 Hz to 10 Hz Noise

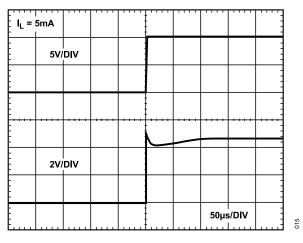


Figure 11. Turn-On Time

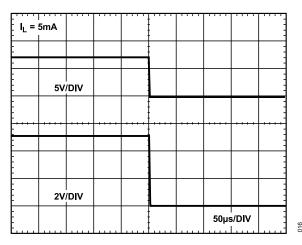


Figure 12. Turn-Off Time

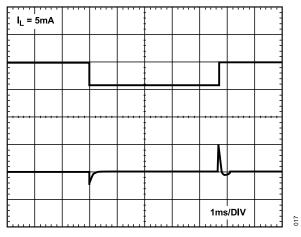


Figure 13. Load Transient Response

analog.com Rev. B | 6 of 8

TYPICAL PERFORMANCE CHARACTERISTICS

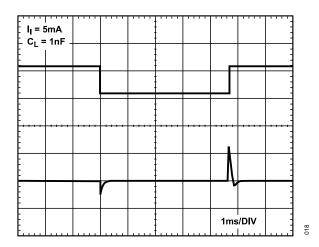


Figure 14. Load Transient Response

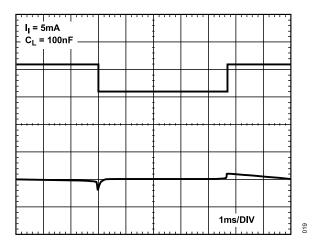


Figure 15. Load Transient Response

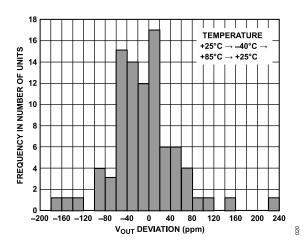


Figure 16. Typical Hysteresis for the ADR29x Product

analog.com Rev. B | 7 of 8

OUTLINE DIMENSIONS

Package Drawing (Option)	Package Type	Package Description
RU-8	TSSOP	8-Lead Thin Shrink Small Outline Package

For the latest package outline information and land patterns (footprints), go to Package Index.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Ordering Quantity
ADR293TRU-EP	−55°C to +125°C	8-Lead TSSOP	RU-8	96
ADR293TRU-EP-R7	−55°C to +125°C	8-Lead TSSOP	RU-8	1,000
ADR293TRUZ-EP	−55°C to +125°C	8-Lead TSSOP	RU-8	96
ADR293TRUZ-EP-R7	−55°C to +125°C	8-Lead TSSOP	RU-8	1,000

¹ Z = RoHS Compliant Part.

OUTPUT VOLTAGE, INITIAL ACCURACY, AND TEMPERATURE COEFFICIENT OPTIONS

Model ¹	Output Voltage (V)	Initial Accuracy (%)	Temperature Coefficient (ppm/°C max)
ADR293TRU-EP	5.00	0.20	30
ADR293TRU-EP-R7	5.00	0.20	30
ADR293TRUZ-EP	5.00	0.20	30
ADR293TRUZ-EP-R7	5.00	0.20	30

¹ Z = RoHS Compliant Part.

