BQ79758-Q1 SLUSFV4 - AUGUST 2024 # BQ79758-Q1 Functional Safety-Compliant Automotive 18S Battery Monitor With **Current Sense** #### 1 Features - AEC-Q100 qualified with the following results: - Device temperature grade 1: –40°C to +125°C ambient operating temperature range - **Functional Safety-Compliant** - Documentation to aid ISO 26262 system design - Systematic capability up to ASIL D - Hardware capability up to ASIL D - Measure 9 to 18 batteries in series per device, stackable up to 64 devices - Dedicated ADC with typical ±1mV accuracy - Two independent Current Sense ADCs with ±0.1% gain error drift and input range +/-275mV. - **Programmable Over Current Detection** comparators - Support limp home mode with full redundancy - Integrated post-ADC configurable digital low-pass - Supports busbar without affecting measurement accuracy - 10 GPIOs for temp sensor/analog/digital/I²C controller/SPI controller - Internal cell balancing - Balancing at 300mA - User controlled PWM adjustment cell balancing current - Built-in balancing thermal management with automatic pause and resume control - Robust daisy chain communication and support Ring Architecture - Hardware reset by host simulates POR-like event without battery removal - On chip memory for one time custom programming - Low power mode current <6µA - Compatible with BQ79600-Q1 with SPI/UART interface #### 2 Applications - Battery Management System (BMS) in hybrid and electric powertrain systems - Energy storage battery packs with Battery **Management Systems** #### 3 Description The BQ79758-Q1 provides high-accuracy cell voltage measurements for up to 18S battery modules in highvoltage battery management systems in xEV/EV. The monitor offers different channel options in the same package type, providing pin-to-pin compatibility and supporting high reuse of the established software and hardware across any platform. This device has a state-of-the-art ADC architecture/measurement system meeting stringent automotive standard and safety requirements. With the daisy-chain isolated by transformer (or capacitor), the device is suitable for centralized or distributed architectures in xEV powertrain. #### **Device Information** | PART NUMBER | PACKAGE ¹ | BODY SIZE (NOM) | | | | |-------------|----------------------|---------------------|--|--|--| | BQ79758-Q1 | HTQFP (64-pin) | 10.00 mm × 10.00 mm | | | | For all available packages, see Section 6. **Simplified System Diagram** ## 4 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. #### 4.1 Device Support #### 4.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. #### 4.2 Documentation Support #### 4.2.1 Related Documentation The below documents are available in TI mySecure: - Functional Safety Manual for BQ7975x-Q1 Family of 18S/16S/14S Precision Automotive Battery Monitor - BQ79758-Q1 Functional Safety Analysis Report Summary - BQ79758-Q1 Functional Safety Report ## 4.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 4.4 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 4.5 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 4.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 4.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. #### 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | DATE | REVISION | NOTES | |-------------|----------|-----------------| | August 2024 | * | Initial Release | Product Folder Links: BQ79758-Q1 # 6 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: BQ79758-Q1 ## 6.1 Package Option Addendum #### **Packaging Information** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball
Finish ⁽⁶⁾ | MSL Peak
Temp ⁽³⁾ | Op Temp
(°C) | Device
Marking ^{(4) (5)} | |------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------------------------|---------------------------------|-----------------|--------------------------------------| | BQ79758QPAPRQ1 | ACTIVE | HTQFP | PAP | 64 | 1000 | RoHS & Green | NIPDAU | MSL-3
260C-168HR | -40 to 125 | BQ79758Q | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material). - (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event must TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: BQ79758-Q1 ## 6.2 Tape and Reel Information # TAPE DIMENSIONS KO P1 BO W Cavity A0 | A0 | Dimension designed to accommodate the component width | | | | | | | | |----|---|--|--|--|--|--|--|--| | B0 | Dimension designed to accommodate the component length | | | | | | | | | K0 | Dimension designed to accommodate the component thickness | | | | | | | | | W | Overall width of the carrier tape | | | | | | | | | P1 | Pitch between successive cavity centers | | | | | | | | | | | | | | | | | | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | BQ79758QPAPRQ1 | HTQFP | PAP | 64 | 1000 | 330.0 | 24 | 13 | 13 | 1.5 | 16.0 | 24.0 | Q2 | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | BQ79758QPAPRQ1 | HTQFP | PAP | 64 | 1000 | 367.0 | 367.0 | 55.0 | #### 6.3 Mechanical Data ## **PACKAGE OUTLINE** # PAP0064N ## HTQFP - 1.2 mm max height NOTES: PowerPAD is a trademark of Texas Instruments - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side. - 4. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - 5. Strap features may not be present. - 6. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. ## **EXAMPLE BOARD LAYOUT** ## **PAP0064N** HTQFP - 1.2 mm max height NOTES: (continued) - 7. Publication IPC-7351 may have alternate designs. - 8. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 9. This package is designed to be soldered to a thermal pad on the board. Refer to technical brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). ## **EXAMPLE STENCIL DESIGN** ## **PAP0064N** ## HTQFP - 1.2 mm max height NOTES: (continued) - Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 10. Board assembly site may have different recommendations for stencil design. ## IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated