

## DP83TG720S-Q1 1000BASE-T1 Automotive Ethernet PHY with SGMII and RGMII

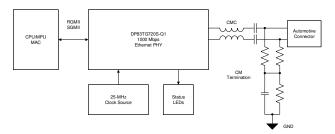
### 1 Features

- IEEE802.3bp 1000BASE-T1 compliant
- Open Alliance TC12 Interoperability and EMC compliant
  - Interoperability tested with OA/IEEE compliant
  - EMC immunity Class-IV compliant for UTP (unshielded twisted pair)
- Integrated LPF on MDI pins
- MAC Interfaces: RGMII and SGMII
- Supported I/O voltages: 3.3V, 2.5V, and 1.8V
- Pin compatible with TI's 100BASE-T1 PHY
  - Single board design for 100BASE-T1 and 1000BASE-T1 with required BOM change
- Power savings features:
  - Standby and sleep
  - Local and remote wake-up
- Diagnostic tool kit
  - High accuracy temperature monitor
  - Voltage monitor
  - ESD event monitor
  - Data throughput calculator: inbuilt MAC packet generator, counter and error checker
  - Link quality monitoring
  - Cable open and short fault detection
  - Loopback modes
- 25MHz clock output source
- VQFN, wettable flank packaging
- AEC-Q100 Qualified
  - Inbuilt ESD protection: IEC61000-4-2 ESD: ±8 kV contact discharge
  - Device temperature grade 1: –40°C to +125°C ambient operating temperature

## 2 Applications

- Telematics control unit (TCU, TBOX)
- Gateway and Body Control Module (BCM)
- ADAS: LIDAR, RADAR, Front Camera

### 3 Description


The DP83TG720S-Q1 device is an IEEE 802.3bp and Open Alliance compliant automotive Ethernet physical layer transceiver. The device provides all physical layer functions needed to transmit and receive data over unshielded/shielded single twisted-pair cables. The device provides xMII flexibility with support for RGMII and SGMII MAC interfaces.

DP83TG720 is compliant to Open Alliance EMC and interoperable specifications over unshielded twisted cable. DP83TG720 is front print compatible to TI's 100BASE-T1 PHY enabling design scalability with single board for both speeds. This device offers the Diagnostic Tool Kit, with an extensive list of realtime monitoring tools, debug tools and test modes. Within the tool kit is the first integrated electrostatic discharge (ESD) monitoring tool. The device is capable of counting ESD events on both the xMII and MDI as well as providing real-time monitoring through the use of a programmable interrupt. Additionally, the DP83TG720S-Q1 includes a data generator and checker tool to generate customizable MAC packets and check the errors on incoming packets. This enables system level datapath tests/optimizations without dependency on MAC.

#### **Device Information**

| PART NUMBER   | PACKAGE (1) | BODY SIZE (NOM) |
|---------------|-------------|-----------------|
| DP83TG720S-Q1 | VQFN (36)   | 6.00mm × 6.00mm |

- For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and (2) includes pins, where applicable.



Simplified Schematic



# **Table of Contents**

| 1 Features                                                                                                                                                                                                                                                                                                                            | 6.4 Device Functional Modes.       38         6.5 Programming.       53         6.6 Register Maps.       57                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Pin Configuration and Functions.       3         Pin Functions.       4         4.1 Pin States.       6         4.2 Pin Power Domain.       9                                                                                                                                                                                       | 7 Application and Implementation1677.1 Application Information1677.2 Typical Applications1677.3 Power Supply Recommendations167                                                                                                                                                                                                                                        |
| 5 Specifications       10         5.1 Absolute Maximum Ratings       10         5.2 ESD Ratings       10         5.3 Recommended Operating Conditions       11         5.4 Thermal Information       11         5.5 Electrical Characteristics       11         5.6 Timing Requirements       15         5.7 Timing Diagrams       19 | 7.4 Compatibility with TI's 100BT1 PHY       170         7.5 Layout       171         8 Device and Documentation Support       174         8.1 Receiving Notification of Documentation Updates       174         8.2 Support Resources       174         8.3 Trademarks       174         8.4 Electrostatic Discharge Caution       174         8.5 Glossary       174 |
| 5.8 LED Drive Characteristics.       23         6 Detailed Description.       24         6.1 Overview.       24         6.2 Functional Block Diagram.       25         6.3 Feature Description.       26                                                                                                                              | 9 Revision History                                                                                                                                                                                                                                                                                                                                                     |



# **4 Pin Configuration and Functions**

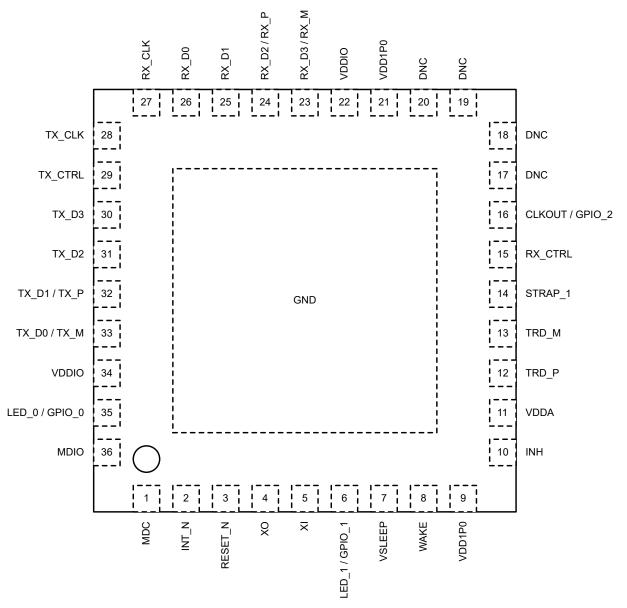



Figure 4-1. RHA Package 36-Pin VQFN Top View



## **Pin Functions**

Table 4-1. Pin Functions

| PIN           |          | 0=1==(4)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME          | NO.      | STATE <sup>(1)</sup> | DESCRIPTION (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAC INTERF    | ACE      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RX_D3<br>RX_M | 23       |                      | Receive Data: Symbols received on the cable are decoded and transmitted out of these pins synchronous to                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RX_D2<br>RX_P | 24       | S, PD, O             | the rising edge of RX_CLK. Valid data is contained when RX_DV(decoded from RX_CTL) is asserted. A nibble, RX_D[3:0], is transmitted in RGMII mode.                                                                                                                                                                                                                                                                                                                                                                                                   |
| RX_D1         | 25       |                      | RX_M / RX_P: Differential SGMII Data Output. These pins transmit data from the PHY to the MAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RX_D0         | 26       | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RX_CLK        | 27       | 0                    | Receive Clock: In RGMII mode, PHY provides this 125MHz clock to MAC. Unused in SGMII mode                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RX_CTRL       | 15       | S, PD, O             | RGMII Receive Control: Receive control combines receive data valid indication and receive error indication into a single signal. RX_DV is presented on the rising edge of RX_CLK and RX_ER is presented on the falling edge of RX_CLK.  Used only as strap in SGMII mode                                                                                                                                                                                                                                                                             |
| TX_CLK        | 28       | I                    | Transmit Clock: In RGMII mode, MAC provides this 125MHz clock to PHY. Unused in SGMII mode                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TX_CTRL       | 29       | 1                    | RGMII Transmit Control: Transmit control combines transmit enable and transmit error indication into a single signal. TX_EN is presented prior to the rising edge of TX_CLK; TX_ER is presented on the falling edge of TX_CLK. Unused in SGMII mode                                                                                                                                                                                                                                                                                                  |
| TX_D3         | 30       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TX_D2         | 31       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TX_D1<br>TX_P | 32       | I                    | Transmit Data: In RGMII mode, the transmit data nibble, TX_D[3:0], is received from the MAC.  TX_M / TX_P: Differential SGMII Data Input. These pins receive data that is transmitted from the MAC to the PHY.                                                                                                                                                                                                                                                                                                                                       |
| TX_D0<br>TX_M | 33       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SERIAL MAN    | IAGEMEN  | T INTERFACE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MDC           | 1        | I                    | Management Data Clock: Synchronous clock to the MDIO serial management input and output data.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MDIO          | 36       | OD, IO               | <b>Management Data Input/Output:</b> Bidirectional management data signal that is sourced by either the management station or the PHY. This pin requires an external pull-up resistor (recommended value = $2.2k\Omega$ ).                                                                                                                                                                                                                                                                                                                           |
| CONTROL IN    | ITERFACE | Ė                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ĪNT           | 2        | PU, OD, O            | Interrupt: Active-LOW output, which is asserted LOW when an interrupt condition occurs. This pin has a weak internal pullup. Register access is necessary to enable various interrupt triggers. Once an interrupt event flag is set, register access is required to clear the interrupt event on this pin.  This pin can be configured as an Active-HIGH output using register[0x0011].  To capture the interrupt source reliably, status from interrupt registers x12, x13, x18 is recommended to be read after interrupt is asserted on int_n pin. |
| RESET         | 3        | PU, I                | RESET: Active-LOW input, which initializes or reinitializes the DP83TG720S-Q1. Asserting this pin LOW for at least 10µs forces a reset process to occur. All internal registers reinitialize to the default states as specified for each bit in the Register Map section. All bootstrap pins are resampled upon deassertion of reset.                                                                                                                                                                                                                |
| INH           | 10       | PMOS OD              | <b>INH:</b> Active-HIGH PMOS open-drain output. When the PHY enters the sleep state, PHY releases the INH pin to allow an external pull-down resistor (recommended value = $10k\Omega$ ) to pull the line to ground. When in any other state, the INH pin drives a HIGH state to the VSLEEP rail.                                                                                                                                                                                                                                                    |
| WAKE          | 8        | PD, I                | <b>WAKE:</b> Active-HIGH (this pin works on VSLEEP domain) pulse on wake-up pin wakes up the PHY from the sleep state. For pulse width, refer to timing section. This pin can be directly tied to the VSLEEP rail when the sleep state is not used or left float.                                                                                                                                                                                                                                                                                    |

### **Table 4-1. Pin Functions (continued)**

| PIN                |                   | STATE(1)             | DESCRIPTION (2)                                                                                                                                                                                                                                                           |
|--------------------|-------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME               | NO.               | STATE <sup>(1)</sup> | DESCRIPTION (2)                                                                                                                                                                                                                                                           |
| STRP_1             | 14                | I                    | Strap 1: This pin is for strapping PHY_AD bits.                                                                                                                                                                                                                           |
| CLOCK INTE         | RFACE             |                      |                                                                                                                                                                                                                                                                           |
| XI                 | 5                 | I                    | Reference Clock Input: Reference clock 25MHz ±100ppm-tolerance crystal or oscillator input. The device supports either an external crystal resonator connected across pins XI and XO, or an external CMOS-level oscillator connected to pin XI only and XO left floating. |
| хо                 | 4                 | 0                    | Reference Clock Output: XO pin is used for crystal only. This pin is left floating when a CMOS-level oscillator is connected to XI.                                                                                                                                       |
| LED/GPIO IN        | TERFACE           |                      |                                                                                                                                                                                                                                                                           |
| LED_0 /<br>GPIO_0  | 35                | S, PD, IO            | LED_0: Link Status                                                                                                                                                                                                                                                        |
| LED_1 /<br>GPIO_1  | 6                 | S, PD, IO            | LED_1: Link Status and BLINK for TX/RX Activity                                                                                                                                                                                                                           |
| CLKOUT /<br>GPIO_2 | 16                | Ю                    | Clock Output: 25MHz reference clock(buffered replication of XI) by default. If not used, clock output can be disabled by writing register 0x0453 = 0x0006.                                                                                                                |
| MEDIUM DEF         | ENDENT            | INTERFACE            |                                                                                                                                                                                                                                                                           |
| TRD_M TRD_P        | 13<br>12          | Ю                    | Differential Transmit and Receive: Bidirectional differential signaling configured for 1000BASE-T1 operation, IEEE 802.3bp compliant.                                                                                                                                     |
|                    |                   | CONNECTIONS          | <u> </u>                                                                                                                                                                                                                                                                  |
| VDDA3P3            | 11                | SUPPLY               | Core Supply: 3.3V. Refer to power supply recommendations for decoupling network.                                                                                                                                                                                          |
| VDDIO              | 22, 34            | SUPPLY               | IO Supply: 1.8V, 2.5V, or 3.3V. Refer to power supply recommendations for decoupling network.                                                                                                                                                                             |
| VDD1P0             | 9, 21             | SUPPLY               | Core Supply: 1.0V. Refer to power supply recommendations for decoupling network.                                                                                                                                                                                          |
| VSLEEP             | 7                 | SUPPLY               | Sleep Supply: 3.3V. Refer to power supply recommendations for decoupling network.  This pin shall be tied to VDDA3P3 if sleep functionality is not used.                                                                                                                  |
| GROUND             | DAP               | GROUND               | Ground                                                                                                                                                                                                                                                                    |
| DO NOT COM         | INECT             | I                    | 1                                                                                                                                                                                                                                                                         |
| DNC                | 17, 18,<br>19, 20 | DNC                  | <b>DNC:</b> Do Not Connect (test structures connected to these pins and must be kept floating to avoid damage or wrong mode entry of PHY)                                                                                                                                 |

- Type: I = Input O = Output (1)

  - IO = Input/Output
  - OD = Open Drain
  - PD = Internal Pulldown
  - PU = Internal Pullup
  - S = Strap: Configuration pin (all configuration pins have weak internal pullups or pulldowns)
- When pins are unused, follow the recommended connection requirements provided in the table above. The pins which do not have required termination can be left floating.



## 4.1 Pin States

Table 4-2. Pin States - RGMII

| PIN           | ı            | POWER-UP / RESET |                    |               | NORMAL OPERATION - RGMII |                    |  |
|---------------|--------------|------------------|--------------------|---------------|--------------------------|--------------------|--|
| NAME          | PIN STATE(1) | PULL TYPE        | PULL VALUE<br>(kΩ) | PIN STATE (1) | PULL TYPE                | PULL VALUE<br>(kΩ) |  |
| MDC           | I            | none             | -                  | I             | none                     | -                  |  |
| INT_N         | I            | PU               | 9                  | OD            | PU                       | 9                  |  |
| RESET_N       | ı            | PU               | 9                  | I             | PU                       | 9                  |  |
| XO            | 0            | none             | -                  | 0             | none                     | -                  |  |
| ΧI            | I            | none             | -                  | I             | none                     | -                  |  |
| LED_1         | I            | PD               | 9                  | 0             | none                     | -                  |  |
| WAKE          | I            | PD               | 50                 | I             | PD                       | 50                 |  |
| STRP_1        | ı            | PD               | 6.3                | I             | none                     | -                  |  |
| INH           | PMOS,OD,O    | none             | -                  | PMOS OD, O    | none                     | -                  |  |
| RX_CTRL       | ı            | PD               | 6.3                | 0             | none                     | -                  |  |
| CLKOUT/GPIO_2 | 0            | none             | -                  | 0             | none                     | -                  |  |
| RX_D3         | ı            | PD               | 9                  | 0             | none                     | -                  |  |
| RX_D2         | I            | PD               | 9                  | 0             | none                     | -                  |  |
| RX_D1         | ı            | PD               | 9                  | 0             | none                     | -                  |  |
| RX_D0         | ı            | PD               | 9                  | 0             | none                     | -                  |  |
| RX_CLK        | ı            | PD               | 9                  | 0             | none                     | -                  |  |
| TX_CLK        | I            | none             | -                  | I             | none                     | -                  |  |
| TX_CTRL       | I            | none             | -                  | I             | none                     | -                  |  |
| TX_D3         | ı            | none             | -                  | I             | none                     | -                  |  |
| TX_D2         | ı            | none             | -                  | I             | none                     | -                  |  |
| TX_D1         | I            | none             | -                  | I             | none                     | -                  |  |
| TX_D0         | ı            | none             | -                  | I             | none                     | -                  |  |
| LED_0         | I            | PD               | 9                  | 0             | none                     | -                  |  |
| MDIO          | ı            | none             | -                  | Ю             | none                     | -                  |  |

(1) Type: I = Input O = Output IO = Input/Output

OD = Open Drain

PD = Internal pulldown

PU = Internal pullup

### Table 4-3. Pin States - SGMII

| PIN           | ı             | POWER-UP / RESE | T                  | NORMAL OPERATION - SGMII |           |                    |
|---------------|---------------|-----------------|--------------------|--------------------------|-----------|--------------------|
| NAME          | PIN STATE (1) | PULL TYPE       | PULL VALUE<br>(kΩ) | PIN STATE (1)            | PULL TYPE | PULL VALUE<br>(kΩ) |
| MDC           | I             | none            | -                  | I                        | none      | -                  |
| INT_N         | I             | PU              | 9                  | OD                       | PU        | 9                  |
| RESET_N       | I             | PU              | 9                  | I                        | PU        | 9                  |
| ХО            | 0             | none            | -                  | 0                        | none      | -                  |
| XI            | 1             | none            | -                  | I                        | none      | -                  |
| LED_1         | I             | PD              | 9                  | 0                        | none      | -                  |
| WAKE          | 1             | PD              | 50                 | I                        | PD        | 50                 |
| STRP_1        | I             | PD              | 6.3                | I                        | none      | -                  |
| INH           | PMOS,OD,O     | none            | -                  | PMOS OD, O               | none      | -                  |
| RX_CTRL       | 1             | PD              | 6.3                | I                        | PD        | 6.3                |
| CLKOUT/GPIO_2 | 0             | none            | -                  | 0                        | none      | -                  |
| RX_D3         | I             | PD              | 9                  | 0                        | none      | -                  |
| RX_D2         | I             | PD              | 9                  | 0                        | none      | -                  |
| RX_D1         | I             | PD              | 9                  | Hi-Z                     | PD        | 9                  |
| RX_D0         | 1             | PD              | 9                  | Hi-Z                     | PD        | 9                  |
| RX_CLK        | 1             | PD              | 9                  | Hi-Z                     | PD        | 9                  |
| TX_CLK        | I             | none            | -                  | Hi-Z                     | none      | -                  |
| TX_CTRL       | 1             | none            | -                  | Hi-Z                     | none      | -                  |
| TX_D3         | 1             | none            | -                  | Hi-Z                     | none      | -                  |
| TX_D2         | 1             | none            | -                  | Hi-Z                     | none      | -                  |
| TX_D1         | I             | none            | -                  | I                        | none      | -                  |
| TX_D0         | 1             | none            | -                  | I                        | none      | -                  |
| LED_0         | 1             | PD              | 9                  | 0                        | none      | -                  |
| MDIO          | 1             | none            | -                  | Ю                        | none      | -                  |

(1) Type: I = Input O = Output IO = Input/Output OD = Open Drain

PD = Internal pulldown

PU = Internal pullup Hi-Z = High Impedence



### Table 4-4. Pin States - Sleep and Isolate

| Table 4-4. Pin States - Sleep and Isolate |               |                        |                    |               |           |                    |  |
|-------------------------------------------|---------------|------------------------|--------------------|---------------|-----------|--------------------|--|
| PIN                                       |               | MAC ISOLATE            |                    | SLEEP         |           |                    |  |
| NAME                                      | PIN STATE (1) | PULL TYPE              | PULL VALUE<br>(kΩ) | PIN STATE (1) | PULL TYPE | PULL VALUE<br>(kΩ) |  |
| MDC                                       | I             | none                   | -                  | Float         | none      | -                  |  |
| INT_N                                     | 0             | PU                     | 9                  | Float         | none      | -                  |  |
| RESET_N                                   | 1             | PU                     | 9                  | Float         | none      | -                  |  |
| XO                                        | 0             | none                   | -                  | Float         | none      | -                  |  |
| XI                                        | 1             | none                   | -                  | Float         | none      | -                  |  |
| LED_1                                     | 0             | none                   | -                  | Float         | none      | -                  |  |
| WAKE                                      | 1             | PD                     | 50                 | I             | none      | 50                 |  |
| STRP_1                                    | 1             | none                   | -                  | Float         | none      | -                  |  |
| INH                                       | PMOS,OD,O     | none                   | -                  | PMOS OD, O    | none      | -                  |  |
| RX_CTRL                                   | 1             | PD                     | 6.3                | Float         | none      | -                  |  |
| CLKOUT/GPIO_2                             | 0             | none                   | -                  | Float         | none      | -                  |  |
| RX_D3                                     | I             | PD/none <sup>(2)</sup> | 9                  | Float         | none      | -                  |  |
| RX_D2                                     | 1             | PD/none <sup>(2)</sup> | 9                  | Float         | none      | -                  |  |
| RX_D1                                     | 1             | PD                     | 9                  | Float         | none      | -                  |  |
| RX_D0                                     | I             | PD                     | 9                  | Float         | none      | -                  |  |
| RX_CLK                                    | 1             | PD                     | 9                  | Float         | none      | -                  |  |
| TX_CLK                                    | 1             | none                   | -                  | Float         | none      | -                  |  |
| TX_CTRL                                   | I             | none                   | -                  | Float         | none      | -                  |  |
| TX_D3                                     | I             | none                   | -                  | Float         | none      | -                  |  |
| TX_D2                                     | I             | none                   | -                  | Float         | none      | -                  |  |
| TX_D1                                     | I             | none                   | -                  | Float         | none      | -                  |  |
| TX_D0                                     | 1             | none                   | -                  | Float         | none      | -                  |  |
| LED_0                                     | 0             | none                   | -                  | Float         | none      | -                  |  |
| MDIO                                      | Ю             | none                   | -                  | Float         | none      | -                  |  |

(1) Type: I = Input

O = Output

IO = Input/Output

OD = Open Drain

PD = Internal pulldown

PU = Internal pullup

Hi-Z = High Impedence

Float = IO is not powered and hence pin is not biased by the PHY

(2) PD only for Rgmii's isolate mode.

#### Note

For sleep mode entry vdda, vddio and vdd1p0 are supposed to be powered-down. See figure Required Implementation of Sleep Mode for further details.



## 4.2 Pin Power Domain

**Table 4-5. Pin Power Domain Table** 

| Pin           | RGMII Mode | SGMII Mode |
|---------------|------------|------------|
| MDC           | VDDIO      | VDDIO      |
| INT_N         | VDDIO      | VDDIO      |
| RESET_N       | VDDIO      | VDDIO      |
| XI            | VDDIO      | VDDIO      |
| XO            | VDDIO      | VDDIO      |
| LED_1         | VDDIO      | VDDIO      |
| WAKE          | VSLEEP     | VSLEEP     |
| STRP_1        | VDDIO      | VDDIO      |
| INH           | VSLEEP     | VSLEEP     |
| RX_CTRL       | VDDIO      | VDDIO      |
| CLKOUT/GPIO_2 | VDDIO      | VDDIO      |
| RX_D3         | VDDIO      | VDDA       |
| RX_D2         | VDDIO      | VDDA       |
| RX_D1         | VDDIO      | VDDIO      |
| RX_D0         | VDDIO      | VDDIO      |
| RX_CLK        | VDDIO      | VDDIO      |
| TX_CLK        | VDDIO      | VDDIO      |
| TX_CTRL       | VDDIO      | VDDIO      |
| TX_D3         | VDDIO      | VDDIO      |
| TX_D2         | VDDIO      | VDDIO      |
| TX_D1         | VDDIO      | VDDA       |
| TX_D0         | VDDIO      | VDDA       |
| LED_0         | VDDIO      | VDDIO      |
| MDIO          | VDDIO      | VDDIO      |
| TRD_P         | VDDA       | VDDA       |
| TRD_M         | VDDA       | VDDA       |



## **5 Specifications**

## **5.1 Absolute Maximum Ratings**

over operating free-air temperature range (unless otherwise noted)(1)

|                                    |                                                                                                    | MIN  | TYP MAX                  | UNIT |
|------------------------------------|----------------------------------------------------------------------------------------------------|------|--------------------------|------|
| Supply<br>Voltage                  | VDDA3P3                                                                                            | -0.5 | 4                        | V    |
| Supply<br>Voltage                  | VDD1P0                                                                                             | -0.5 | 1.4                      | V    |
| Supply<br>Voltage                  | VDDIO (3.3V)                                                                                       | -0.5 | 4                        | V    |
| Supply<br>Voltage                  | VDDIO (2.5V)                                                                                       | -0.5 | 2.9                      | V    |
| Supply<br>Voltage                  | VDDIO (1.8V)                                                                                       | -0.5 | 2.2                      | V    |
| Supply<br>Voltage                  | V <sub>SLEEP</sub>                                                                                 | -0.5 | 4                        | V    |
| MDI Pins                           | TRD_M, TRD_P                                                                                       | -0.5 | 4                        | V    |
| LVCMOS/<br>LVTTL Input<br>Voltage  | MDC, RESET, XI, LED_1, STRP_1, RX_CTRL, CLKOUT, RX_D[3:0], TX_CLK, TX_CTRL, TX_D[3:0], LED_0, MDIO | -0.5 | VDDIO + 0.3              | V    |
| LVCMOS/<br>LVTTL Input<br>Voltage  | WAKE                                                                                               | -0.5 | V <sub>SLEEP</sub> + 0.3 | V    |
| LVCMOS/<br>LVTTL Output<br>Voltage | ĪNT, LED_1, RX_CTRL, CLKOUT, RX_D[3:0], RX_CLK, LED_0, MDIO                                        | -0.5 | VDDIO + 0.3              | V    |
| LVCMOS/<br>LVTTL Output<br>Voltage | INH                                                                                                | -0.5 | VSLEEP + 0.3             | V    |
| TJ                                 | Junction Temperature                                                                               |      | 150                      | °C   |
| T <sub>stg</sub>                   | Storage temperature                                                                                | -65  | 150                      | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Rating can cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.

### 5.2 ESD Ratings

|                    |                         |                                                            |              | VALUE | UNIT |
|--------------------|-------------------------|------------------------------------------------------------|--------------|-------|------|
| V <sub>(ESD)</sub> | Electrostatic discharge | Human body model (HBM), per<br>AEC Q100-002 <sup>(1)</sup> | All pins     | ±2000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge | Human body model (HBM), per<br>AEC Q100-002 <sup>(1)</sup> | TRD_M, TRD_P | ±8000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per AEC Q100-011               | All pins     | ±500  | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge | IEC 61000-4-2 contact discharge                            | TRD_M, TRD_P | ±8000 | V    |

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



# **5.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                    |                                   | MIN  | NOM | MAX  | UNIT |
|--------------------|-----------------------------------|------|-----|------|------|
|                    | IO Supply Voltage, 1.8V operation | 1.62 | 1.8 | 1.98 |      |
| VDDIO              | IO Supply Voltage, 2.5V operation | 2.25 | 2.5 | 2.75 | V    |
|                    | IO Supply Voltage, 3.3V operation | 2.97 | 3.3 | 3.63 |      |
| VDDA3P3            | Core Supply Voltage, 3.3V         | 2.97 | 3.3 | 3.63 | V    |
| VDD1P0             | Core Supply Voltage, 1.0V         | 0.95 | 1   | 1.1  | V    |
| V <sub>SLEEP</sub> | Sleep Supply Voltage, 3.3V        | 2.97 | 3.3 | 3.63 | V    |
| T <sub>A</sub>     | Ambient temperature               | -40  |     | 125  | °C   |

### **5.4 Thermal Information**

|                        |                                              | DP83TG720  |      |
|------------------------|----------------------------------------------|------------|------|
|                        | THERMAL METRIC(1)                            | RHA (VQFN) | UNIT |
|                        |                                              | 36 PINS    |      |
| $R_{\theta JA}$        | Junction-to-ambient thermal resistance       | 32.5       | °C/W |
| R <sub>θJC(top)</sub>  | Junction-to-case (top) thermal resistance    | 22.2       | °C/W |
| $R_{\theta JB}$        | Junction-to-board thermal resistance         | 13.3       | °C/W |
| $\Psi_{JT}$            | Junction-to-top characterization parameter   | 0.3        | °C/W |
| $\Psi_{JB}$            | Junction-to-board characterization parameter | 13.3       | °C/W |
| R <sub>0</sub> JC(bot) | Junction-to-case (bottom) thermal resistance | 3.2        | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

### 5.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)(1)

|                 | PARAMETER                 | TEST CONDITIONS                                         | MIN         | TYP         | MAX         | UNIT        |
|-----------------|---------------------------|---------------------------------------------------------|-------------|-------------|-------------|-------------|
| DC CHAI         | RACTERISTICS              |                                                         |             |             |             |             |
| ΧI              |                           |                                                         |             |             |             |             |
| V <sub>IH</sub> | High-level Input Voltage  |                                                         | 1.3         |             |             | V           |
| V <sub>IL</sub> | Low-level Input Voltage   |                                                         |             |             | 0.5         | V           |
| WAKE<br>pin     | WAKE pin                  | WAKE pin                                                | WAKE<br>pin | WAKE<br>pin | WAKE<br>pin | WAKE<br>pin |
| V <sub>IH</sub> | High-level Input Voltage  | V <sub>SLEEP</sub> = 3.3V ± 10%                         | 2           |             |             | V           |
| V <sub>IL</sub> | Low-level Input Voltage   | V <sub>SLEEP</sub> = 3.3V ± 10%                         |             |             | 0.8         | V           |
| INH pin         | INH pin                   | INH pin                                                 | INH pin     | INH pin     | INH pin     | INH pin     |
| V <sub>OH</sub> | High-level Output Voltage | I <sub>OH</sub> = -2mA, V <sub>SLEEP</sub> = 3.3V ± 10% | 2.4         |             |             | V           |
| 3.3V VDI        | DIO <sup>(2)</sup>        |                                                         |             |             |             |             |
| V <sub>OH</sub> | High-level Output Voltage | I <sub>OH</sub> = -2mA, VDDIO = 3.3V ± 10%              | 2.4         |             |             | V           |
| V <sub>OL</sub> | Low-level Output Voltage  | I <sub>OL</sub> = 2mA, VDDIO = 3.3V ± 10%               |             |             | 0.4         | V           |
| V <sub>IH</sub> | High-level Input Voltage  | VDDIO = 3.3V ± 10%                                      | 2           |             |             | V           |
| V <sub>IL</sub> | Low-level Input Voltage   | VDDIO = 3.3V ± 10%                                      |             |             | 0.8         | V           |
| 2.5V VDI        | DIO <sup>(2)</sup>        |                                                         |             |             |             |             |
| V <sub>OH</sub> | High-level Output Voltage | I <sub>OH</sub> = -2mA, VDDIO = 2.5V ± 10%              | 2           |             |             | V           |
| V <sub>OL</sub> | Low-level Output Voltage  | I <sub>OL</sub> = 2mA, VDDIO = 2.5V ± 10%               |             |             | 0.4         | V           |
| V <sub>IH</sub> | High-level Input Voltage  | VDDIO = 2.5V ± 10%                                      | 1.7         |             |             | V           |



## **5.5 Electrical Characteristics (continued)**

Over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

| PARAMETER              |                                                                                  | TEST CONDITIONS                            | MIN             | MIN TYP MAX |                |    |
|------------------------|----------------------------------------------------------------------------------|--------------------------------------------|-----------------|-------------|----------------|----|
| V <sub>IL</sub>        | Low-level Input Voltage                                                          | VDDIO = 2.5V ± 10%                         |                 |             | 0.7            | V  |
| 1.8V VDE               | DIO <sup>(2)</sup>                                                               |                                            |                 |             |                |    |
| V <sub>OH</sub>        | High-level Output Voltage                                                        | I <sub>OH</sub> = -2mA, VDDIO = 1.8V ± 10% | VDDIO –<br>0.45 |             |                | V  |
| V <sub>OL</sub>        | Low-level Output Voltage                                                         | I <sub>OL</sub> = 2mA, VDDIO = 1.8V ± 10%  |                 |             | 0.45           | V  |
| V <sub>IH</sub>        | High-level Input Voltage                                                         | VDDIO = 1.8V ± 10%                         | 0.7 *<br>VDDIO  |             |                | V  |
| V <sub>IL</sub>        | Low-level Input Voltage                                                          | VDDIO = 1.8V ± 10%                         |                 |             | 0.3 *<br>VDDIO | V  |
| Ін                     | Input High Current (MDIO)                                                        | VIN = VCC, -40°C to 125°C                  | -5              |             | 5              | μA |
| Ін                     | Input High Current (RGMII Input pin,MDC)                                         | VIN = VCC, -40°C to 125°C                  | -20             |             | 20             | μA |
| oz                     | Input High Current (MDIO)                                                        | VIN swept from 0V till VCC, -40°C to 125°C | -40             |             | 40             | μA |
| IL                     | Input Low Current (RGMII Input pin, MDC, MDIO)                                   | VIN = GND, -40°C to 125°C                  | -40             |             | 5              | μΑ |
| l <sub>ozL</sub>       |                                                                                  | INH                                        |                 |             | 6              | μA |
| loz                    | Tri-state Output Current (5)                                                     | VIN swept from 0V till VCC, -40°C to 125°C | -40             |             | 10             | μA |
| l <sub>oz</sub>        | Tri-state Output Current (6)                                                     | VIN swept from 0V till VCC, -40°C to 125°C | -60             |             | 60             | μA |
| C <sub>IN</sub>        | Input Capacitance                                                                | LVCMOS/LVTTL pins (3)                      |                 |             | 2              | pF |
| 0                      | Input Capacitance                                                                | LVCMOS/LVTTL pins (4)                      |                 |             | 4              | pF |
| C <sub>IN</sub>        | при Сараспапсе                                                                   | XI                                         |                 |             | 1              | pF |
| C <sub>OUT</sub>       | Output Capacitance                                                               | LVCMOS/LVTTL pins (3)                      |                 |             | 2              | pF |
| Соит                   | Output Capacitance                                                               | LVCMOS/LVTTL pins (4)                      |                 |             | 4              | pF |
| 001                    | Output Capacitance                                                               | XO                                         |                 |             | 1              | pF |
| R <sub>pull-up</sub>   | Integrated Pull-Up Resistance                                                    | INT, RESET                                 | 6.5             | 9           | 12.5           | kΩ |
| $R_{pull-down}$        | Integrated Pull-Down Resistance                                                  | STRP_1, RX_CTRL                            | 4.725           | 6.3         | 7.875          | kΩ |
| R <sub>pull-down</sub> | Integrated Pull-Down Resistance                                                  | LED_1, RX_D[3:0], RX_CLK, LED_0            | 7.3             | 9           | 13             | kΩ |
| `pull-down             | integrated Full-Down Nesistance                                                  | WAKE                                       | 35              | 50          | 62.5           | kΩ |
| $R_{pull-down}$        | Integrated Pull-Up Resistance when Active                                        | INH                                        |                 | 106         |                | Ω  |
| R <sub>series</sub>    | Integrated MAC Series Termination Resistor ( Default)                            | RX_D[3:0], RX_CTRL, and RX_CLK             | 24              | 42          | 52             | Ω  |
| Rseries                | Integrated MAC Series Terminatin<br>Resistor (with register<0x0456> =<br>0x0148) | RX_D[3:0], RX_CTRL, and RX_CLK             | 30              | 52          | 65             | Ω  |
| Rseries                | Integrated MAC Series Terminatin<br>Resistor (with register<0x0456> =<br>0x0168) | RX_D[3:0], RX_CTRL, and RX_CLK             | 40              | 70          | 84             | Ω  |
| CURREN                 | IT CONSUMPTION, SLEEP MODE                                                       | ·                                          | <u> </u>        |             |                |    |
| SLEEP                  | Sleep Supply Current                                                             | V <sub>SLEEP</sub>                         |                 | 485         | 840            | μΑ |
| CURREN                 | IT CONSUMPTION, RESET ASSERTED                                                   |                                            | ,               |             | "              |    |
| DDIO                   | IO Supply Current, VDDIO = 1.8V                                                  | VDDIO                                      |                 | 4           | 9              | mA |
| DDIO                   | IO Supply Current, VDDIO = 2.5V                                                  | VDDIO                                      |                 | 5           | 12             | mA |
| I <sub>DDIO</sub>      | IO Supply Current, VDDIO = 3.3V                                                  | VDDIO                                      |                 | 6.5         | 15             | mA |
| DDA3P3                 | Core Supply Current, 3.3V                                                        | VDDA3P3                                    |                 | 5           | 8              | mA |



## **5.5 Electrical Characteristics (continued)**

Over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                       | PARAMETER                                                                                               | TEST CONDITIONS                     | MIN   | TYP  | MAX            | UNIT |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|-------|------|----------------|------|--|--|--|--|
| I <sub>DD1P0</sub>    | Core Supply Current, 1.0V                                                                               | VDD1P0                              |       | 30   | 110            | mA   |  |  |  |  |
| CURREN <sup>-</sup>   | T CONSUMPTION, STANDBY                                                                                  |                                     | l     |      | ,              |      |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 1.8V                                                                         | VDDIO                               |       | 4    | 11             | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 2.5V                                                                         | VDDIO                               |       | 6    | 13             | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 3.3V                                                                         | VDDIO                               |       | 8    | 15             | mA   |  |  |  |  |
| I <sub>DDA3P3</sub>   | Core Supply Current, 3.3V                                                                               | VDDA3P3                             |       | 16   | 18             | mA   |  |  |  |  |
| I <sub>DD1P0</sub>    | Core Supply Current, 1.0V                                                                               | VDD1P0                              |       | 33   | 112            | mA   |  |  |  |  |
| CURREN <sup>-</sup>   | CURRENT CONSUMPTION, ACTIVE MODE, Voltage: +/- 10%, Traffic : 100%, Packet Size: 1518, Content : Random |                                     |       |      |                |      |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 1.8V                                                                         | RGMII                               |       | 20   | 25             | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 2.5V                                                                         | RGMII                               |       | 26   | 30             | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 3.3V                                                                         | RGMII                               |       | 33   | 40             | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 1.8V                                                                         | SGMII                               |       | 3.5  | 5              | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 2.5V                                                                         | SGMII                               |       | 5    | 7              | mA   |  |  |  |  |
| I <sub>DDIO</sub>     | IO Supply Current, VDDIO = 3.3V                                                                         | SGMII                               |       | 6.5  | 8              | mA   |  |  |  |  |
| I <sub>DDA3P3</sub>   | Core Supply Current, 3.3V                                                                               | RGMII                               |       | 85   | 89             | mA   |  |  |  |  |
| I <sub>DD1P0</sub>    | Core Supply Current, 1.0V                                                                               | RGMII                               |       | 177  | 250            | mA   |  |  |  |  |
| I <sub>DDA3P3</sub>   | Core Supply Current, 3.3V                                                                               | SGMII                               |       | 95   | 100            | mA   |  |  |  |  |
| I <sub>DD1P0</sub>    | Core Supply Current, 1.0V                                                                               | SGMII                               |       | 200  | 260            | mA   |  |  |  |  |
| I <sub>SLEEP</sub>    | Sleep Supply Current                                                                                    | V <sub>SLEEP</sub> = 3.3V +/- 10%   |       | 1000 | 1500           | μA   |  |  |  |  |
| MDI CHAF              | RACTERISTICS                                                                                            |                                     |       |      |                |      |  |  |  |  |
| V <sub>OD-MDI</sub>   | Output Differential Voltage                                                                             | $R_{L(diff)} = 100 \Omega$          |       |      | 1.3            | V    |  |  |  |  |
| R <sub>MDI-DIFF</sub> | Integrated Differential MDI Termination (Active State)                                                  | TRD_P, TRD_M                        |       | 100  |                | Ω    |  |  |  |  |
| R <sub>MDI-DIFF</sub> | Integrated Differential MDI Termination (Sleep State)                                                   | TRD_P, TRD_M                        |       | 100  |                | Ω    |  |  |  |  |
| SGMII DR              | RIVER DC SPECIFICATIONS                                                                                 |                                     |       |      |                |      |  |  |  |  |
| V <sub>OD-SGMII</sub> | Output Differential Voltage                                                                             | $R_{L(diff)} = 100 \Omega$          | 150   |      | 400            | mV   |  |  |  |  |
| R <sub>OUT-DIFF</sub> | Integrated Differential Output Termination                                                              | RX_P, RX_M                          | 78    | 100  | 130            | Ω    |  |  |  |  |
| SGMII RE              | CEIVER DC SPECIFICATIONS                                                                                |                                     |       |      |                |      |  |  |  |  |
| $V_{\text{IDTH}}$     | Input Differential Threshold                                                                            |                                     | 100   |      |                | mV   |  |  |  |  |
| R <sub>IN-DIFF</sub>  | Integrated Differential Input Termination                                                               | TX_P, TX_M                          | 82    | 100  | 121            | Ω    |  |  |  |  |
| BOOTSTE               | RAP DC CHARACTERISTICS                                                                                  |                                     |       |      |                |      |  |  |  |  |
| 2 level<br>straps     |                                                                                                         |                                     |       |      |                |      |  |  |  |  |
| Vbsl_1v8              | Bootstrap Threshold                                                                                     | Mode 1, VDDIO = 1.8V ± 10%, 2-level | 0     |      | 0.35*VD<br>DIO | V    |  |  |  |  |
| Vbsh_1v<br>8          | Bootstrap Threshold                                                                                     | Mode 2, VDDIO = 1.8V ± 10%, 2-level | 1.175 |      | VDDIO          | V    |  |  |  |  |
| Vbsl_2v5              | Bootstrap Threshold                                                                                     | Mode 1, VDDIO = 2.5V ± 10%, 2-level | 0     |      | 0.7            | V    |  |  |  |  |
| Vbsh_2v<br>5          | Bootstrap Threshold                                                                                     | Mode 2, VDDIO = 2.5V ± 10%, 2-level | 1.175 |      | VDDIO          | V    |  |  |  |  |
| Vbsl_3v3              | Bootstrap Threshold                                                                                     | Mode 1, VDDIO = 3.3V ± 10%, 2-level | 0     |      | 0.7            | V    |  |  |  |  |
| Vbsh_3v               | Bootstrap Threshold                                                                                     | Mode 2, VDDIO = 3.3V ± 10%, 2-level | 1.175 |      | VDDIO          | V    |  |  |  |  |
| 3 level<br>straps     |                                                                                                         |                                     |       | -    |                |      |  |  |  |  |



### 5.5 Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

| PARAMETER            |                                                                                | TEST CONDITIONS                     | MIN TYP I       |      | MAX             | UNIT |
|----------------------|--------------------------------------------------------------------------------|-------------------------------------|-----------------|------|-----------------|------|
| V <sub>bs1_1V8</sub> | Bootstrap Threshold                                                            | Mode 1, VDDIO = 1.8V ± 10%, 3-level | 0               |      | 0.35 *<br>VDDIO | V    |
| V <sub>bs2_1V8</sub> | Bootstrap Threshold                                                            | Mode 2, VDDIO = 1.8V ± 10%, 3-level | 0.40 *<br>VDDIO |      | 0.75 *<br>VDDIO | V    |
| V <sub>bs3_1V8</sub> | Bootstrap Threshold                                                            | Mode 3, VDDIO = 1.8V ± 10%, 3-level | 0.84 *<br>VDDIO |      | VDDIO           | V    |
| V <sub>bs1_2V5</sub> | Bootstrap Threshold                                                            | Mode 1, VDDIO = 2.5V ± 10%, 3-level | 0               |      | 0.19 *<br>VDDIO | V    |
| V <sub>bs2_2V5</sub> | Bootstrap Threshold                                                            | Mode 2, VDDIO = 2.5V ± 10%, 3-level | 0.27 *<br>VDDIO |      | 0.41 *<br>VDDIO | V    |
| V <sub>bs3_2V5</sub> | Bootstrap Threshold                                                            | Mode 3, VDDIO = 2.5V ± 10%, 3-level | 0.58 *<br>VDDIO |      | VDDIO           | V    |
| V <sub>bs1_3V3</sub> | Bootstrap Threshold                                                            | Mode 1, VDDIO = 3.3V ± 10%, 3-level | 0               |      | 0.18 *<br>VDDIO | V    |
| V <sub>bs2_3V3</sub> | Bootstrap Threshold                                                            | Mode 2, VDDIO = 3.3V ± 10%, 3-level | 0.22 *<br>VDDIO |      | 0.42 *<br>VDDIO | V    |
| V <sub>bs3_3V3</sub> | Bootstrap Threshold                                                            | Mode 3, VDDIO = 3.3V ± 10%, 3-level | 0.46 *<br>VDDIO |      | VDDIO           | V    |
| Temperati            | ure Sensor                                                                     |                                     |                 |      | <u> </u>        |      |
|                      | Temperature Sensor Resolution (LSB)                                            | -40°C to 125°C                      |                 | 1.5  |                 | °C   |
|                      | Temperature Sensor Accuracy (Voltage and Temperature Variation on single part) | -40°C to 125°C                      | -7.5            |      | 7.5             | °C   |
|                      | Temperature Sensor Accuracy (Voltage, Temperature and Part-to-Part variation)  | -40°C to 125°C                      | -21.5           |      | 20              | °C   |
|                      | Temperature Sensor Range                                                       |                                     | -40             |      | 140             | °C   |
| /oltage S            | ensor                                                                          |                                     | •               |      | '               |      |
|                      | VDDA3P3 Sensor Range                                                           |                                     | 2.66            | 3.3  | 3.96            | V    |
|                      | VDDA3P3 Sensor Resolution (LSB)                                                | -40°C to 125°C                      |                 | 8.6  |                 | mV   |
|                      | VDDA3P3 Sensor Accuracy ( Voltage and Temperature Variation)                   | -40°C to 125°C                      |                 | 8.6  |                 | mV   |
|                      | VDDA3P3 Sensor Accuracy Part-to-Part                                           | -40°C to 125°C                      | -68.8           |      | 68.8            | mV   |
|                      | VDD1P0 Sensor Range                                                            |                                     | 0.8             |      | 1.2             | V    |
|                      | VDD1P0 Sensor Resolution (LSB)                                                 | -40°C to 125°C                      |                 | 2.8  |                 | mV   |
|                      | VDD1P0 Sensor Accuracy ( Voltage and Temperature Variation)                    | -40°C to 125°C                      |                 | 2.8  |                 | mV   |
|                      | VDD1P0 Sensor Accuracy Part-to-Part                                            | -40°C to 125°C                      | -22.4           |      | 22.4            | mV   |
|                      | VDDIO Sensor Range                                                             |                                     | 1.44            |      | 3.8             | V    |
|                      | VDDIO Sensor Resolution (LSB)                                                  | -40°C to 125°C                      |                 | 15.4 |                 | mV   |
|                      | VDDIO Sensor Accuracy ( Voltage and Temperature Variation)                     | -40°C to 125°C                      |                 | 15.4 |                 | mV   |
|                      | VDDIO Sensor Accuracy Part-to-Part                                             | -40°C to 125°C                      | -78             |      | 78              | mV   |

- (1) Verified by production test, characterization or design
- (2) For pins: LED\_1, STRP\_1, RX\_CTRL, CLKOUT, RX\_D[3:0], RX\_CLK, LED\_0
  (3) For pins: MDC, INT, RESET, LED\_1, STRP\_1, RX\_CTRL, CLKOUT, RX\_D0, RX\_D1, RX\_CLK, TX\_CLK, TX\_CTRL, TX\_D2, TX\_D3, LED\_0, and MDIO
- (4) For pins: TX D0, TX D1, RX D2, and RX D3
- (5) For pins : LED\_1, RX\_D[3:0], RX\_CLK, LED\_0
- (6) For pins : STRP\_1 and RX\_CTRL



# **5.6 Timing Requirements**

|         | PARAMETER                                                                                       | TEST<br>CONDITIONS                          | MIN | NOM  | MAX  | UNIT |
|---------|-------------------------------------------------------------------------------------------------|---------------------------------------------|-----|------|------|------|
| POWER   | -UP TIMING                                                                                      | ı                                           |     |      |      |      |
| T5.1    | VDDA3P3 Duration <sup>(2)</sup>                                                                 | 0% to 100% (+/-<br>10% VDDA3P3)             | 0.5 |      | 40   | ms   |
| T5.2    | VDD1P0 Duration <sup>(2)</sup>                                                                  | 0% to 100% (+/-<br>10% VDD1P0)              | 0.1 |      | 40   | ms   |
| T5.2    | VDDIO Duration <sup>(2)</sup>                                                                   | VDDIO = 1.8V                                | 0.1 |      | 40   | ms   |
| T5.2    | VDDIO Duration <sup>(2)</sup>                                                                   | VDDIO = 2.5V                                | 0.1 |      | 40   | ms   |
| T5.2    | VDDIO Duration <sup>(2)</sup>                                                                   | VDDIO = 3.3V                                | 0.1 |      | 40   | ms   |
| T5.2    | V <sub>SLEEP Duration</sub> (2)                                                                 | 0% to 100% (+/-<br>10% V <sub>SLEEP</sub> ) | 0.1 |      | 40   | ms   |
| T5.3    | Crystal stabilization-time post power-up (from last power rail ramp to 100%)                    |                                             |     | 1500 |      | μs   |
| T5.4    | Osillator stabilization-time post power-up ( from last power rail ramp to $100\%)^{(3)}$        |                                             |     |      | 20   | ms   |
| T5.5    | Post power-up stabilization-time prior to MDC preamble for register access                      |                                             | 65  |      |      | ms   |
| T5.6    | Hardware configuration latch-in time from power-up                                              |                                             |     |      | 60   | ms   |
| T5.7    | Hardware configuration pins transition to functional mode from latch-in completion              |                                             |     |      | 110  | ns   |
| T5.8    | PAM3 IDLE Stream from power-up (Master Mode)                                                    |                                             |     |      | 60   | ms   |
| RESET   | TIMING (RESET_N)                                                                                |                                             |     |      |      |      |
| T6.1    | RESET pulse width                                                                               |                                             | 5   |      |      | μs   |
| T6.2    | Post reset stabilization-time prior to MDC preamble for register access                         |                                             | 1   |      |      | ms   |
| T6.3    | Hardware configuration latch-in time from reset                                                 |                                             |     |      | 2    | μs   |
| T6.4    | Hardware configuration pins transition to functional mode from latch-in completion              |                                             |     |      | 1.5  | μs   |
| T6.5    | PAM3 IDLE Stream from reset (Master Mode)                                                       |                                             |     |      | 1500 | μs   |
| SMI TIM | ING                                                                                             |                                             |     |      |      |      |
| T4.1    | MDC to MDIO (Output) Delay Time (25 pF load)                                                    |                                             | 0   | 6    | 10   | ns   |
| T4.2    | MDIO (Input) to MDC Setup Time                                                                  |                                             | 10  |      |      | ns   |
| T4.3    | MDIO (Input) to MDC Hold Time                                                                   |                                             | 10  | -    |      | ns   |
|         | MDC Frequency ( 25 pF load)                                                                     |                                             |     | 2.5  | 20   | MHz  |
| RECEIV  | E LATENCY TIMING                                                                                |                                             |     |      |      |      |
|         | SSD symbol on MDI to Rising edge of RGMII RX_CLK with assertion of RX_CTRL                      |                                             |     |      | 8    | μs   |
|         | SSD symbol on MDI to Rising edge of RGMII RX_CLK with assertion of RX_CTRL (RS-FEC bypass mode) |                                             |     |      | 400  | ns   |
|         | SSD symbol on MDI to first symbol of SGMII                                                      |                                             |     |      | 9    | μs   |
|         | SSD symbol on MDI to first symbol of SGMII (RS-FEC bypass mode)                                 |                                             |     |      | 450  | ns   |
| TRANSI  | MIT LATENCY TIMING                                                                              |                                             |     |      | '    |      |
|         | RGMII Rising edge TX_CLK with assertion TX_CTRL to SSD symbol on MDI                            |                                             |     |      | 0.8  | μs   |
|         | RGMII Rising edge TX_CLK with assertion TX_CTRL to SSD symbol on MDI (RS-FEC bypass mode)       |                                             |     |      | 600  | ns   |
|         | First symbol of SGMII to SSD symbol on MDI                                                      |                                             |     |      | 0.9  | μs   |



# **5.6 Timing Requirements (continued)**

(1

|                                     | PARAMETER                                                                         | TEST<br>CONDITIONS          | MIN   | NOM   | MAX   | UNIT |
|-------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|-------|-------|-------|------|
|                                     | First symbol of SGMII to SSD symbol on MDI (RS-FEC bypass mode)                   |                             |       |       | 700   | ns   |
| 25MHz O                             | SCILLATOR REQUIREMENTS                                                            | 1                           |       |       |       |      |
|                                     | Frequency (XI)                                                                    |                             |       | 25    |       | MHz  |
|                                     | Frequency Tolerance and Stability Over temperature and aging                      |                             | -100  |       | 100   | ppm  |
|                                     | Rise / Fall Time (10% - 90%) <sup>(6)</sup>                                       |                             |       |       | 8     | ns   |
|                                     | Jitter (RMS)                                                                      | Integrated upto 5MHz        |       |       | 1     | ps   |
|                                     | Duty Cycle                                                                        |                             | 40    | 50    | 60    | %    |
| RGMII TII                           | MING                                                                              | 1                           |       |       |       |      |
| T <sub>setupR</sub>                 | TX_D[3:0], TX_CTRL Setup to TX_CLK                                                | on PHY pins                 | 1     | 2     |       | ns   |
| T <sub>holdR</sub>                  | TX_D[3:0], TX_CTRL Hold from TX_CLK (5)                                           | on PHY pins                 | 1     | 2     |       | ns   |
| $T_{\text{skewT}}$                  | RX_D[3:0], RX_CTRL Delay from RX_CLK (Align Mode Enabled)                         | On PHY Pins                 | -500  | 0     | 500   | ps   |
| T <sub>skewT</sub>                  | RX_D[3:0], RX_CTRL Delay from RX_CLK (Shift Mode Enabled, default) <sup>(4)</sup> | On PHY Pins                 | 2.190 | 2.650 | 2.970 | ns   |
| T <sub>cyc</sub>                    | Clock Cycle Duration                                                              | RX_CLK                      | 7.2   | 8     | 8.8   | ns   |
| T <sub>cyc</sub>                    | Clock Cycle Duration                                                              | TX_CLK                      | 7.2   | 8     | 8.8   | ns   |
| Duty_G                              | Duty Cycle                                                                        | RX_CLK                      | 45    | 50    | 55    | %    |
| Duty_G                              | Duty Cycle                                                                        | TX_CLK                      | 45    | 50    | 55    | %    |
| Tr                                  | Rise Time (20% - 80%)                                                             | CL=Ctrace=5pF               |       |       | 0.75  | ns   |
| Tf                                  | Fall Time (20% - 80%)                                                             | C <sub>L=Ctrace</sub> = 5pF |       |       | 0.75  | ns   |
| RGMII<br>RX Shift<br>Mode<br>Delays | DLL DLL_RX_DELAY_CTRL_SL=0 <sup>(4)</sup>                                         |                             | 0.330 | 0.650 | 0.970 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=1 <sup>(4)</sup>                                         |                             | 0.580 | 0.900 | 1.220 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=2 <sup>(4)</sup>                                         |                             | 0.830 | 1.150 | 1470  | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=3 <sup>(4)</sup>                                         |                             | 1.000 | 1.400 | 1.720 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=4 <sup>(4)</sup>                                         |                             | 1.230 | 1.650 | 1.970 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=5 <sup>(4)</sup>                                         |                             | 1.490 | 1.990 | 2.220 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=6 <sup>(4)</sup>                                         |                             | 1.690 | 2.150 | 2.470 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=7 <sup>(4)</sup>                                         |                             | 1.960 | 2.400 | 2.730 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=8 <sup>(4)</sup>                                         |                             | 2.180 | 2.650 | 2.970 | ns   |
|                                     | DLL DLL_RX_DELAY_CTRL_SL=9 <sup>(4)</sup>                                         |                             | 2.490 | 2.900 | 3.220 | ns   |
| RGMII<br>Shift TX<br>Mode<br>Delays |                                                                                   |                             |       |       |       |      |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=1 <sup>(4)</sup> (8)                                     |                             | 0.08  | 0.25  | 0.38  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=2 <sup>(4)</sup> (8)                                     |                             | 0.27  | 0.49  | 0.67  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=3 <sup>(4)</sup> (8)                                     |                             | 0.51  | 0.73  | 0.91  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=4 <sup>(4)</sup> (8)                                     |                             | 0.75  | 0.97  | 1.15  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=5 <sup>(4)</sup> (8)                                     |                             | 0.94  | 1.21  | 1.44  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=6 <sup>(4)</sup> (8)                                     |                             | 1.18  | 1.45  | 1.68  | ns   |
|                                     | DLL DLL_TX_DELAY_CTRL_SL=7 <sup>(4)</sup> (8)                                     |                             | 1.37  | 1.69  | 1.98  | ns   |



# **5.6 Timing Requirements (continued)**

|         | PARAMETER                                                               | TEST<br>CONDITIONS                                                 | MIN  | NOM  | MAX     | UNIT   |
|---------|-------------------------------------------------------------------------|--------------------------------------------------------------------|------|------|---------|--------|
|         | DLL DLL_TX_DELAY_CTRL_SL=8 <sup>(4)</sup> (8)                           |                                                                    | 1.61 | 1.93 | 2.22    | ns     |
|         | DLL DLL_TX_DELAY_CTRL_SL=9 <sup>(4)</sup> (8)                           |                                                                    | 1.85 | 2.17 | 2.46    | ns     |
|         | DLL DLL_TX_DELAY_CTRL_SL=10 <sup>(4)</sup> (8)                          |                                                                    | 2.04 | 2.42 | 2.75    | ns     |
|         | DLL DLL_TX_DELAY_CTRL_SL=11(4) (8)                                      |                                                                    | 2.28 | 2.65 | 2.99    | ns     |
|         | DLL DLL_TX_DELAY_CTRL_SL=12 <sup>(4)</sup> (8)                          |                                                                    | 2.52 | 2.9  | 3.23    | ns     |
| SGMII ' | TRANSMITTER AC TIMING                                                   |                                                                    |      |      |         |        |
|         | Clock signal duty cycle at 625MHz                                       |                                                                    | 48   |      | 52      | %      |
| rise    | Vod Rise Time                                                           |                                                                    | 100  |      | 200     | ps     |
| fall    | Vod Fall Time                                                           |                                                                    | 100  |      | 200     | ps     |
| litter  | Output jitter                                                           |                                                                    |      | 200  | 320 (7) | ps     |
| 25MHz   | CRYSTAL REQUIREMENTS                                                    |                                                                    |      |      |         |        |
|         | Frequency                                                               |                                                                    |      | 25   |         | MHz    |
|         | Frequency Tolerance and Stability Over temperature and aging            |                                                                    | -100 |      | 100     | ppm    |
|         | Equivalent Series Resistance                                            |                                                                    |      | ,    | 100     | Ω      |
| DUTPU   | IT CLOCK TIMING (CLKOUT)                                                |                                                                    |      |      |         |        |
|         | Frequency                                                               |                                                                    |      | 25   |         | MHz    |
|         | Duty Cycle ( With crystal attached)                                     |                                                                    | 45   |      | 55      | %      |
|         | Rise / Fall Time (10% - 90%)                                            |                                                                    |      |      | 2.5     | ns     |
|         | Jitter (RMS) (Slave Mode, MAC linterface : SGMII)                       |                                                                    |      |      | 5       | ps     |
|         | Jitter (RMS) (Master Mode, MAC linterface : SGMII)                      |                                                                    |      |      | 2.4     | ps     |
|         | Jitter (RMS) (Slave Mode, MAC Interface : RGMII)                        |                                                                    |      |      | 11      | ps     |
|         | Jitter (RMS) (Master Mode, MAC Interface : RGMII)                       |                                                                    |      |      | 15      | ps     |
| Sleen F | Entry and Wake-Up                                                       |                                                                    |      |      | 10      | po     |
| J.00p - |                                                                         | Normal Mode,                                                       |      |      |         |        |
|         | WAKE LOW to Sleep Entry; INH Transition LOW                             | MDI_Energy =<br>FALSE sleep_en =<br>TRUE                           |      | 64   | 85      | us     |
|         | sleep_en = True to Sleep Entry; INH Transition LOW (master mode)        | Normal Mode,<br>WAKE = LOW,<br>MDI_Energy =<br>FALSE               |      | 5    | 85      | us     |
|         | sleep_en = True to Sleep Entry; INH Transition LOW (slave mode)         | Normal Mode,<br>WAKE = LOW,<br>MDI_Energy =<br>FALSE               |      |      | 5000    | us     |
|         | MDI Energy Loss to Sleep Entry; INH Transition LOW                      | Normal Mode,<br>WAKE = LOW,<br>sleep_en = TRUE                     |      |      | 5       | ms     |
|         | Local Wake-Up Pulse Duration (on Wake pin)                              | Sleep Mode, WAKE pin                                               | 80   |      |         | μs     |
|         | Send-S/Send-T pattern duration for wake up from MDI                     | Sleep Mode, Slave                                                  | 1.25 |      |         | ms     |
|         | Local Wake-Up; INH Transition HIGH                                      | Sleep Mode, rising<br>edge of WAKE pin<br>to rising edge of<br>INH |      |      | 85      | us     |
|         | Tolerable differential noise level on MDI for PHY to stay in sleep mode | Sleep Mode                                                         |      |      | 200     | mV pk- |



### **5.6 Timing Requirements (continued)**

(1)

| PARAMETER                                           | TEST<br>CONDITIONS | MIN | NOM | MAX | UNIT     |
|-----------------------------------------------------|--------------------|-----|-----|-----|----------|
| Link-partner's VOD for valid wake-up (for 5m cable) | Sleep Mode         | 840 |     |     | mV pk-pk |

- (1) Verified by production test or characterization or design.
- (2) No supply sequencing constraint across power rails
- (3) In case OSC clock is delayed, additional reset is needed post Osc clock stablisation
- (4) Refer register[0x0430] for programmability of RX and TX delay codes
- (5) PHY provides internal delays on TX\_CLK to TX\_D[3:0] to add additional skew upto 2ns. Refer to register[0x0430] for programmability
- 6) Max rise/fall time of 8ns is supported for duty cycle of 40% to 55%. Max rise/fall time of 6ns is supported for duty cycle of 40% to 60%
- (7) Additional register configuration available to reduce this max number to 300ps (if required)
- (8) Data for 1.8V VDDIO.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



## **5.7 Timing Diagrams**

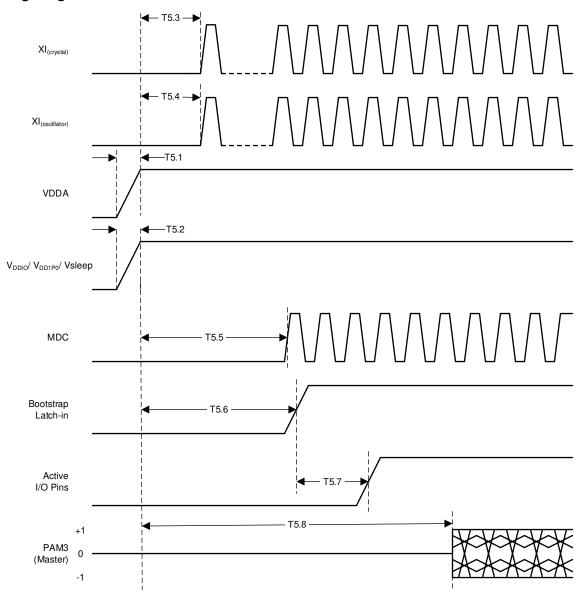



Figure 5-1. Power Up Timing



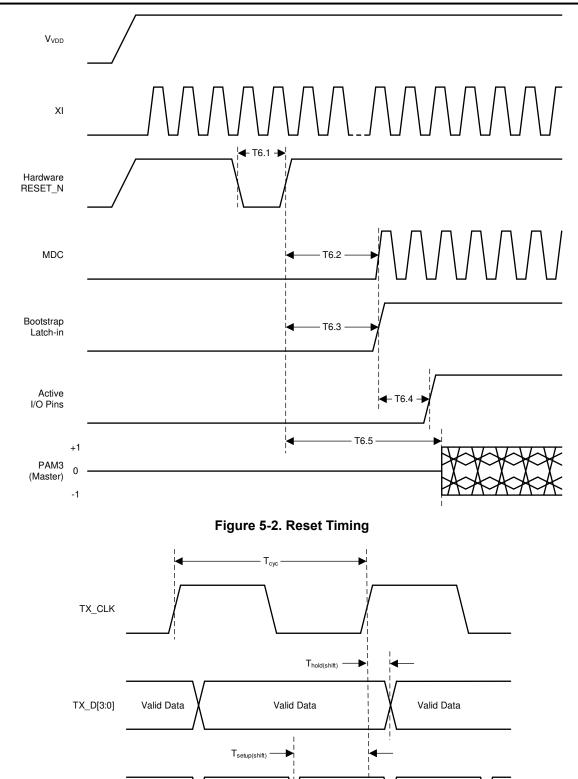



Figure 5-3. RGMII Transmit Timing (Internal Delay Enabled)

TX\_ER

TX\_EN

TX\_EN

TX\_CTRL

TX\_ER

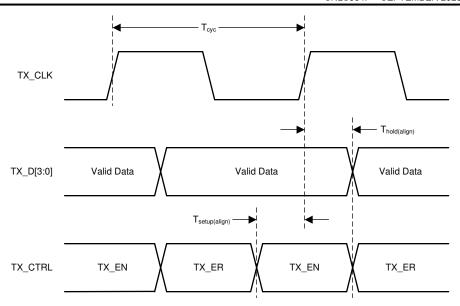



Figure 5-4. RGMII Transmit Timing (Internal Delay Disabled)

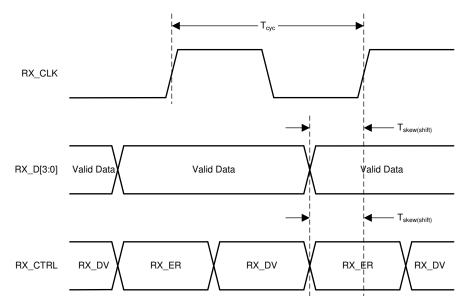



Figure 5-5. RGMII Receive Timing (Internal Delay Enabled)



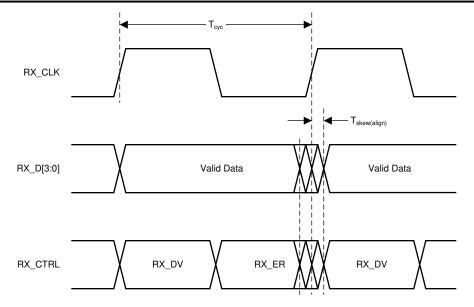



Figure 5-6. RGMII Receive Timing (Internal Delay Disabled)

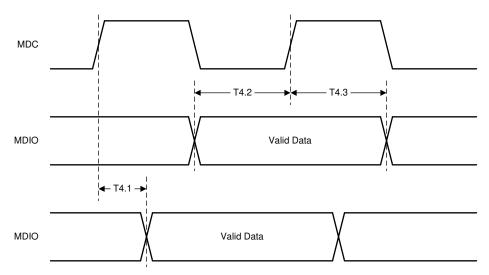



Figure 5-7. Serial Management Timing

## **5.8 LED Drive Characteristics**

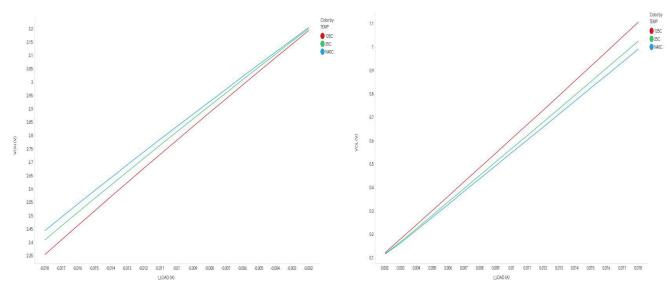



Figure 5-8. LED V vs I for 3.3V VDDIO

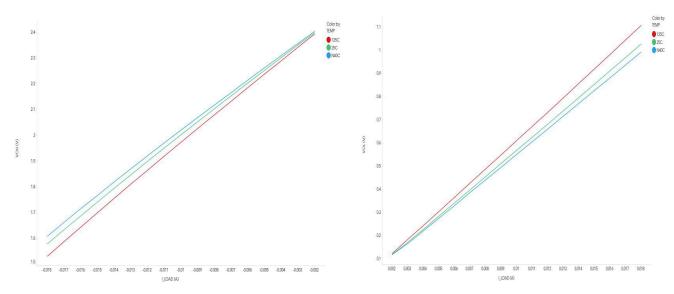



Figure 5-9. LED V vs I for 2.5V VDDIO



## **6 Detailed Description**

### 6.1 Overview

The DP83TG720S-Q1 is a 1000BASE-T1 automotive Ethernet Physical Layer transceiver. It is IEEE 802.3bp compliant and AEC-Q100 qualified for automotive applications.

This device is specifically designed to operate at 1Gbps speed while meeting stringent automotive EMC requirements. The DP83TG720S-Q1 transmits PAM3 ternary symbols at 750-MBd over unshielded/shielded single-twisted pair cable. It is designed for RGMII or SGMII support in a single 36-pin VQFN wettable flank package.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



## 6.2 Functional Block Diagram

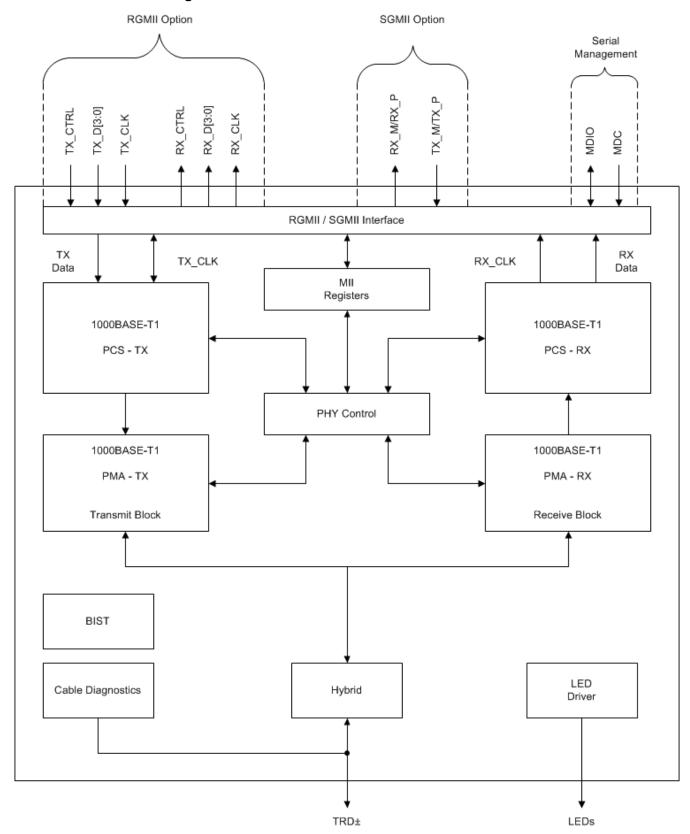



Figure 6-1. DP83TG720S-Q1 Functional Block Diagram

### **6.3 Feature Description**

### 6.3.1 Diagnostic Tool Kit

The DP83TG720S-Q1 diagnostic tool kit provides mechanisms for monitoring normal operation, device-level debugging, system-level debugging, fault detection, and compliance testing. This tool kit includes a built-in self-test with PRBS data, various loopback modes, Signal Quality Indicator (SQI), Time Domain Reflectometry (TDR), voltage monitor, temperature monitor, electrostatic discharge monitor, and IEEE 802.3bp test modes.

#### 6.3.1.1 Signal Quality Indicator

When the DP83TG720S-Q1 is active, the Signal Quality Indicator can be used to determine the quality of link based on SNR readings made by the device.

SQI is derived based on the calculated SNR value and is presented as 8 level indication, where level of 5 provides a BER better than 10<sup>-10</sup>.

#### Note

Refer to *DP83TG720: Configuring for Open Alliance Specification Compliance* application note for details on using SQI register for Open Alliance TC12 SQI tests.

#### 6.3.1.2 Time Domain Reflectometry

Time domain reflectometry helps detecting and estimating the location of OPEN and SHORT faults along a cable.

TDR is activated by setting bit[15] = 'b1 in the register[0x001E]. When TDR diagnostic process gets completed successfully, Bit[1:0] of register[0x001E] becomes 'b10. After this status change, TDR results can be read in the register of following table.

Table 6-1. TDR Result Registers: 0x030F

| Register Bits | Description                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1:0]         | <ul> <li>01 = TDR Activation</li> <li>10 = TDR On</li> <li>00,11 = TDR Not Available</li> </ul>                                                                                                                                                                          |
| [3:2]         | Reserved                                                                                                                                                                                                                                                                 |
| [7:4]         | <ul> <li>0011 = Short</li> <li>0110 = Open</li> <li>0101 = Noise</li> <li>0111 = Cable OK</li> <li>1000 = Test in progress; initial value with TDR ON</li> <li>1101 = Test not possible (for example, noise, active link)</li> <li>Other values are not valid</li> </ul> |
| [13:8]        | <ul> <li>Fault distance = Value in decimal of [13:8]</li> <li>'b111111 = Resolution not possible/out of distance</li> </ul>                                                                                                                                              |
| [15:14]       | Reserved                                                                                                                                                                                                                                                                 |

#### Note

TDR must not be run if the link is already active. Running TDR on active line can make TDR fail and also can result in disruption of link.

Refer to *DP83TG720:* Configuring for Open Alliance Specification Compliance application note for detailed procedure of running TDR.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

#### 6.3.1.3 Built-In Self-Test For Datapath

The DP83TG720S-Q1 incorporates a data-path's Built-In-Self-Test (BIST) to check the PHY level and system level data-paths. BIST has following integrated features which make the system level data transfer tests (through-put etc) and diagnostics possible without relying on MAC or external data generator hardware/software.

- 1. Loopback modes
- 2. Data generator
  - a. Customizable MAC packets generator.
  - b. Transmitted packet counter.
  - c. PRBS stream generator.
- 3. Data checker
  - a. Received MAC packets error checker.
  - b. Received packet counter: Counts total packets received and packets received with errors.
  - c. PRBS lock and PRBS error checker.

#### 6.3.1.3.1 Loopback Modes

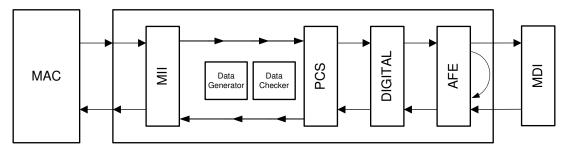



Figure 6-2. All Loopbacks

There are several loopback options within the DP83TG720S-Q1. Enabling different loopback modes enables/ bypass different data-paths according to system verification requirements. Different loopbacks can be enabled along-side following data generation options:

- a. Inbuilt data-generator
- b. External data-generator (on Ethernet cable or MAC side)

Following diagrams illustrate data-flow during different loopback options:

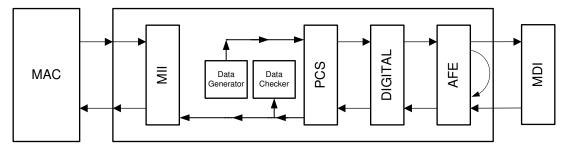



Figure 6-3. Analog Loopback With Inbuilt Data-Gen



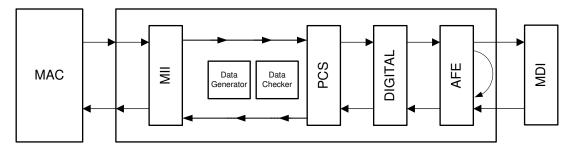



Figure 6-4. Analog Loopback With External Data-Gen

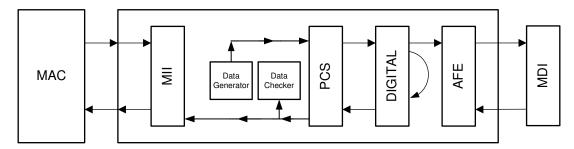



Figure 6-5. Digital Loopback With Inbuilt Data-Gen

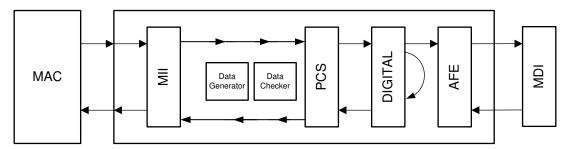



Figure 6-6. Digital Loopback With External Data-Gen

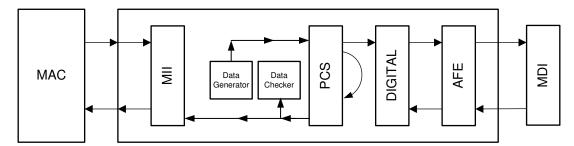



Figure 6-7. PCS Loopback With Inbuilt Data-Gen

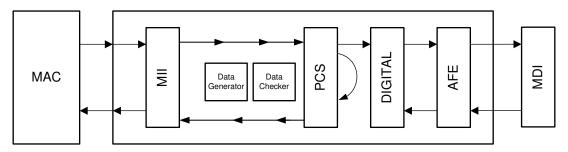



Figure 6-8. PCS Loopback With External Data-Gen

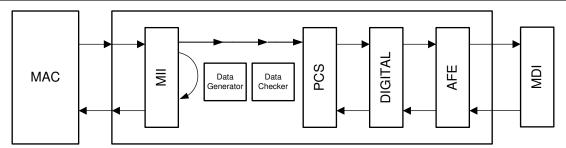



Figure 6-9. xMII Loopback With External Data-Gen

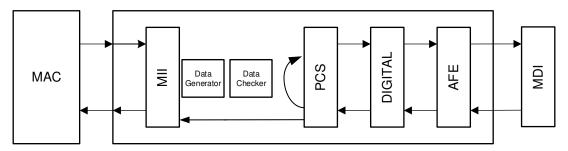



Figure 6-10. xMII Reverse Loopback With External Data-Gen



#### 6.3.1.3.2 Data Generator

Data generator can be programmed to generate either user defined MAC packets or PRBS stream.

Following parameters of generated MAC packets can be configured (refer to registers<0x061B>,register<0x061A> and register<0x0624> for required configuration):

- Packet Length
- Inter-packet gap
- Defined number of packets to be sent or continuous transmission
- Packet data-type: Incremental/Fixed/PRBS
- · Number of valid bytes per packet

Copyright © 2025 Texas Instruments Incorporated

30



### 6.3.1.3.3 Programming Datapath BIST

The following register settings enable different loopbacks, data generation and data checker procedures.

**Table 6-2. Datapath BIST Programming** 

|   | Table 6-2. Datapath Bio Frogramming |                                                       |                                                       |                                                                                                                                                                                     |                                                            |                                                                                                                                                                                             |                                                                                                                                                                                                    |  |  |
|---|-------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Loopback<br>Mode                    | To enable<br>loopback<br>mode                         | To enable data generator and checker: MAC packets     | To check in-<br>coming MAC<br>packets status                                                                                                                                        | To enable data<br>generator and<br>checker: PRBS<br>stream | To check in-<br>coming PRBS<br>status: PRBS<br>stream                                                                                                                                       | Other care-<br>abouts                                                                                                                                                                              |  |  |
| 1 | Analog<br>loopback                  | write: reg[0x0016]=0x 0108 write: reg[0x0405]=0x 2800 | write: reg[0x0624]=0x 55BF write: reg[0x0619]=0x 1555 | read: reg[0x063C] for (15:0) of total received packets count. read: reg[0x063D] for (31:16) of total received packets count. read: reg[0x063E] for Packets received with CRC errors | write: reg[0x0624]=0x55 BF write: reg[0x0619]=0x05 57      | Step 1: write : reg[0x0620](1) = 1'b1 Step 2 : read : reg[0x0620] (7:0) = Number of error bytes received. read : reg[0x0620] (8) (1 indicates PRBS data is coming in and checker is locked) | Disconnect the cable/link-partner. Generated data will be going to MAC side, to disable MAC side: write: reg[0x0000]=0x05                                                                          |  |  |
| 2 | Digital<br>loopback                 | write: reg[0x0016] = 0x0104 write: reg[0x0800] [11]=1 | write: reg[0x0624]=0x 55BF write: reg[0x0619]=0x 1555 | read: reg[0x063C] = [15:0] of total received packets count. read: reg[0x063D]= [31:16] of total received packets count. read: reg<0x063E> -> Packets received with CRC errors       | write: reg[0x0624]=0x55 BF write: reg[0x0619]=0x05 57      | Step 1: write: reg[0x0620][1] = 1'b1 Step 2: read: reg[0x0620] [7:0] = Number of error bytes received. read: reg[0x0620] [8] (1 indicates PRBS data is coming in and checker is locked)     | Generated data will be going to Cu cable side, to disable this transmission: write: reg[0x041F] = 0x1000 Generated data will be going to MAC side, to disable MAC side: write: reg[0x0000]=0x05 40 |  |  |
| 3 | PCS<br>loopback                     | write:<br>reg<0x0016> =<br>0x0101                     | write: reg[0x0624]=0x 55BF write: reg[0x0619]=0x 1555 | read: reg[0x063C]= [15:0] of total received packets count. read: reg[0x063D]= [31:16] of total received packets count. read: reg[0x063E]= Packets received with CRC errors          | write: reg[0x0624]=0x55 BF write: reg[0x0619]=0x05 57      | Step 1: write: reg[0x0620][1] = 1'b1 Step 2: read: reg[0x0620] [7:0] = Number of error bytes received. read: reg[0x0620] [8] (1 indicates PRBS data is coming in and checker is locked)     | Generated data will be going to Cu cable side, to disable this transmission: write: reg[0x041F] = 0x1000 Generated data will be going to MAC side, to disable MAC side: write: reg[0x0000]=0x05 40 |  |  |



## Table 6-2. Datapath BIST Programming (continued)

|   | Loopback<br>Mode             | To enable<br>loopback<br>mode     | To enable data generator and checker: MAC packets                                            | To check in-<br>coming MAC<br>packets status                                                                                                                                                                                                                                | To enable data generator and checker: PRBS stream     | To check in-<br>coming PRBS<br>status: PRBS<br>stream                                                                                                                                   | Other care-<br>abouts                                                                                    |
|---|------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 4 | RGMII<br>loopback            | write: reg<0x0000> = 0x4140       | Data is<br>generated<br>externally at<br>Rgmii TX pins<br>Write :<br>reg[0x0619]=<br>0x1004  | Data can be verified at Rgmii RX pins. Packet errors can additionally be checked internally by: read: reg[0x063C]= [15:0] of total received packets count. read: reg[0x063D] = [31:16] of total received packets count. read: reg[0x063E]= Packets received with CRC errors | Data is generated externally at Rgmii Tx pins.        | Not applicable as data is external. PRBS stream checker works only with internal data generator.                                                                                        | Generated data will be going to Cu cable side, to disable this transmission: write: reg[0x041F] = 0x1000 |
| 5 | SGMII<br>loopback            | write:<br>reg[0x0000] =<br>0x4140 | Data is<br>generated<br>externally at<br>Sgmii TX pins<br>Write :<br>reg[0x0619] =<br>0x1114 | Data can be verified at Sgmii RX pins. Packet errors can additionaly be checked internally by: read: reg[0x063C]= [15:0] of total received packets count. read: reg[0x063D] = [31:16] of total received packets count. read: reg[0x063E] = Packets received with CRC errors | Data is generated externally at Sgmii Tx pins.        | Not applicable as data is external. PRBS stream checker works only with internal data generator.                                                                                        | Generated data will be going to Cu cable side, to disable this transmission: write: reg[0x041F] = 0x1000 |
| 6 | RGMII<br>Reverse<br>loopback | write:<br>reg[0x0016] =<br>0x0010 | write: reg[0x0624]=0x 55BF write: reg[0x0619]=0x 1555                                        | read: reg[0x063C] = [15:0] of total received packets count. read: reg[0x063D] = [31:16] of total received packets count. read: reg[0x063E] = Packets received with CRC errors                                                                                               | write: reg[0x0624]=0x55 BF write: reg[0x0619]=0x05 57 | Step 1: write: reg[0x0620][1] = 1'b1 Step 2: read: reg[0x0620] [7:0] = Number of error bytes received. read: reg[0x0620] [8] (1 indicates PRBS data is coming in and checker is locked) | Generated data will be going to Cu cable side, to disable this transmission: write: reg[0x041F] = 0x1000 |

**Table 6-2. Datapath BIST Programming (continued)** 

|   | Loopback<br>Mode             | To enable<br>loopback<br>mode      | To enable data generator and checker: MAC packets     | To check in-<br>coming MAC<br>packets status                                                                                                                                        | To enable data<br>generator and<br>checker: PRBS<br>stream | To check in-<br>coming PRBS<br>status: PRBS<br>stream                                                                                                                                     | Other care-<br>abouts                                                                                                           |
|---|------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 7 | SGMII<br>Reverse<br>loopback | write :<br>reg[0x042C] =<br>0x0010 | write: reg[0x0624]=0x 55BF write: reg[0x0619]=0x 1555 | read: reg[0x063C] for [15:0] of total received packets count. read: reg[0x063D] for [31:16] of total received packets count. read: reg[0x063E] for Packets received with CRC errors | write: reg[0x0624]=0x55 BF write: reg[0x0619]=0x05 57      | Step 1: write: reg[0x0620][1] = 1'b1 Step 2: read: reg[0x0620] [7:0] for Number of error bytes received. read: reg[0x0620] [8] (1 indicates PRBS data is coming in and checker is locked) | Generated data<br>will be going to<br>Cu cable side,<br>to disable this<br>transmission :<br>write :<br>reg[0x041F] =<br>0x1000 |

### Note

Different MAC packet parameters can be further configured with register[0x061B] and register[0x0624]



#### 6.3.1.4 Temperature and Voltage Sensing

Temperature sensor of PHY can be used to give the indication of the temperature of the system and reading can be taken on the fly by reading the temperature sensor output register.

Voltage sensor senses the voltage of all the supply pins: vdda, vddio and vdd1p0. Each pins active voltage can be sensed by reading the corresponding voltage sensor output register.

All sensors are always active and monitor state machine polls the value of each sensor periodically. Monitor state machine can be further programmed to give higher priority/sampling time to one sensor over another by using MONITOR\_CTRL\_3 register.

Following software sequence can be used to read out any sensor's output:

- Step1: Program register[0x0467] = 0x6004; Initial configuration of monitors
- Step 2: Program register [0x046A] = 0x00A6 and then register [0x046A]=0x00A3; Refresh the monitors
- Step 3: Program register[0x0468] to select the corresponding sensor to be polled and read register [0x047B] [14:7] for selected sensor's output code.
- Step 4 : Feed the values of read sensor's output code (in decimal) in following equations to get the sensor's output value in decimals. Refer to Sensor Select Table for required value of constants to be used in equations:
  - vdda\_value = 3.3 + (vdda\_output\_code vdda\_output\_mean\_code)\*slope\_vdda\_sensor
  - vdd1p0 value = 1.0 + (vdd1p0 output code vdd1p0 ouput mean code)\*slope vdd1p0 sensor
  - vddio calculated = 3.3 + (vddio ouput code vddio output mean code)\*slope vddio sensor
  - temperature\_calculated = 25 + (temperature\_output\_code temperature output mean code)\*slope temperature sensor

#### Table 6-3. Sensor Select Table

| Register[0x0468] | Sensor Selected To Read-out |  |  |
|------------------|-----------------------------|--|--|
| 0x1920           | VDDA Voltage Sensor         |  |  |
| 0x2920           | VDD1P0 Voltage Sensor       |  |  |
| 0x3920           | VDDIO Voltage Sensor        |  |  |
| 0x4920           | Temperature Sensor          |  |  |

#### Table 6-4. Sensor's Constant Values

| Constant                     | Value (in decimal) |
|------------------------------|--------------------|
| vdda_output_mean_code        | 128                |
| slope_vdda3p3_sensor         | 8.63014e-3         |
| vdd1p0_output_mean_code      | 93                 |
| slope_vdd1p0_sensor          | 2.85714e-3         |
| vddio_output_mean_code       | 224                |
| slope_vddio_sensor           | 15.686e-3          |
| temperature_output_mean_code | 161                |
| slope_temperature_sensor     | 1                  |

#### Note

Accuracy of temperature sensor can be maximized (7.5degreeC), if customer can sample "temperature output code" at 25C and use it as "temperature output mean code".

Product Folder Links: DP83TG720S-Q1

#### 6.3.1.5 Electrostatic Discharge Sensing

Electrostatic discharge is a serious issue for electronic circuits and if not properly mitigated can create short-term issues (signal integrity, link drops, packet loss) as well as long-term reliability faults. The DP83TG720S-Q1 has robust integrated ESD circuitry and offers an ESD sensing architecture. ESD events can be detected on MDI pins for further analysis and debug.

The ESD sensing tool is useful for both prototyping and end-applications. Additionally, the DP83TG720S-Q1 provides an interrupt status flag; when an ESD event is logged in the register<0x0442>. Hardware and software resets are ignored by the ESDS register to prevent unwarranted clearing.

Table 6-5. ESD Sensing: Interrupt Setting and Count Reading

| Function          | Required Read/Write                                                                                                       |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Interrupt Enable  | • Write register<0x0012>[3] = 1                                                                                           |  |  |
| ESD Event Counter | <ul> <li>Read register&lt;0x0442&gt;[14:9]</li> <li>Value in decimal indicates the ESD strikes since power-up.</li> </ul> |  |  |

#### 6.3.2 Compliance Test Modes

The six test modes for the DP83TG720S-Q1 are compliant to IEEE 802.3bp, Sub-clause 97.5.2. Supported test modes allow testing of the transmitter waveform Power Spectral Density (PSD) mask, distortion, MDI Master jitter, MDI Slave jitter, droop, transmitter frequency, frequency tolerance, BER monitoring, return loss, and mode conversion. Any of the three GPIOs can be used to output TX\_TCLK for MDI Slave jitter measurement.

#### 6.3.2.1 Test Mode 1

Test mode 1 tests the transmitter clock jitter when linked to a partner. In test mode 1, the DP83TG720S-Q1 PHYs are connected over link segment defined in section 97.6 within IEEE 802.3bp. TX\_TCLK125 is a divided clock derived from TX\_TCLK, which is one sixth the frequency.

#### 6.3.2.2 Test Mode 2

Test mode 2 tests the transmitter MDI Master mode jitter. In test mode 2, the DP83TG720S-Q1 transmits a continuous pattern of three {+1} symbols followed by three {-1} symbols. The transmitted symbols are timed from the 750MHz source, which results in a 125MHz signal.

#### 6.3.2.3 Test Mode 4

Test mode 4 tests the transmitter distortion. In test mode 4, the DP83TG720S-Q1 will transmit the sequence of symbols generated by Equation 1:

$$g(x) = 1 + x^9 + x^{11} \tag{1}$$

The bit sequences, x0n and x1n, are generated from combinations of the scrambler in accordance to and :

$$'x0_n = Scr_n[0]$$
 (2)

$$x1_n = Scr_n[1] \land Scr_n[4]$$
(3)

$$x2_n = Scr_n[1] \land Scr_n[5]$$

$$(4)$$

Example streams of the 3-bit nibbles are shown in Table 6-6.

Table 6-6. Transmitter Test Mode 4 Symbol Mapping

|     |     |     | <i>y</i> |     |
|-----|-----|-----|----------|-----|
| x2n | x1n | x0n | T1n      | T0n |
| 0   | 0   | 0   | -1       | -1  |
| 0   | 0   | 1   | 0        | -1  |
| 0   | 1   | 0   | -1       | 0   |
| 0   | 1   | 1   | -1       | +1  |
| 1   | 0   | 0   | +1       | 0   |
| 1   | 0   | 1   | +1       | -1  |
| 1   | 1   | 0   | +1       | +1  |
| 1   | 1   | 1   | 0        | +1  |

#### 6.3.2.4 Test Mode 5

Test mode 5 tests the transmitter PSD mask. In test mode 5, the DP83TG720S-Q1 will transmit normal Inter-Frame IDLE PAM3 symbols.

#### 6.3.2.5 Test Mode 6

Test mode 6 tests the transmitter droop. In test mode 6, the DP83TG720S-Q1 transmits fifteen {+1} symbols followed by fifteen {-1} symbols with symbol transmission at 750MHz. This 25MHz pattern is repeated continuously until the test mode is disabled.

#### 6.3.2.6 Test Mode 7

Test mode 7 enabled bit error rate measurement on a link segment. This mode uses zero data pattern on the MDI to check BER by comparing an expected zero data pattern to any non-zero bit received. Error checking is performed after FEC and 80B/81B decoding.

**Table 6-7. Test Mode Register Setting** 

| MMD   | Register | Value  | Test Mode                                             |
|-------|----------|--------|-------------------------------------------------------|
| MMD1  | 0x0904   | 0x2000 | Test Mode 1 : Tx_Tclk 125MHz is routed to clkout pin. |
| MMD1  | 0x0904   | 0x4000 | Test Mode 2                                           |
| MMD1  | 0x0904   | 0x8000 | Test Mode 4 : Tx_Tclk 125MHz is routed to clkout pin. |
| MMD1F | 0x0453   | 0x0019 |                                                       |
| MMD1  | 0x0904   | 0xA000 | Test Mode 5                                           |
| MMD1  | 0x0904   | 0xC000 | Test Mode 6                                           |
| MMD1  | 0x0904   | 0xE000 | Test Mode 7                                           |



### **6.4 Device Functional Modes**

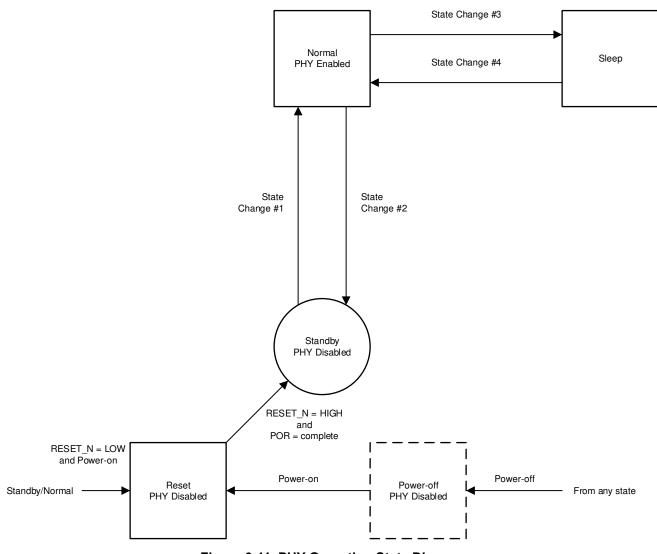



Figure 6-11. PHY Operation State Diagram

### 6.4.1 Power Down

When VDDA3P3 or VDDIO or VDD1P0 is below the POR threshold, the DP83TG720S-Q1 is in a power-down state. All digital IOs will remain in high impedance state and analog blocks are disabled. PMA termination is not present when in power-down.

#### 6.4.2 Reset

Reset is activated upon power-up, when RESET\_N is pulled LOW (for the minimum reset pulse time) or if hardware reset is initiated by setting bit[15] in the register[0x001F].

- Digital state machine restarts after reset and all the register settings are cleared to the boot-up state.
- 25MHz clock on clkout pin will remain active during reset state also.
- MDI/PMA will not have termination during reset state.

#### Note

Straps are re-latched only with pin reset and not by hardware reset through register (register [0x001F] = x8000.

Submit Document Feedback

### 6.4.3 Standby

The device (MDI Master mode or MDI Slave mode) automatically enters into standby post power-up and reset so long that the device is bootstrapped for managed operation.

In standby, all PHY functions are operational except for PCS and PMA blocks. Link establishment is not possible in standby and data cannot be transmitted or received. SMI functions are operational and register configurations are maintained.

If the device is configured for autonomous operation through bootstrap setting, the PHY automatically switches to normal operation once powered on and reset complete.

#### 6.4.4 Normal

Normal mode can be entered from either autonomous or managed operation. When in autonomous operation, the PHY will automatically try to establish link with a valid Link Partner once powered on.

In managed operation, SMI access is required to allow the device to exit standby; commands issued through the SMI allow the device to exit standby and enables both the PCS and PMA blocks. All device features are operational in normal mode.

Autonomous operation can be enabled through SMI access by setting bit[6] in register 0x18B.

#### 6.4.5 Sleep

Once in sleep mode, all PHY blocks are disabled except for energy detection. All register configurations are lost in sleep mode. No link can be established, data cannot be transmitted or received and SMI access is not available when in sleep mode.

To use sleep mode of PHY refer to implementation highlighted in following figure.



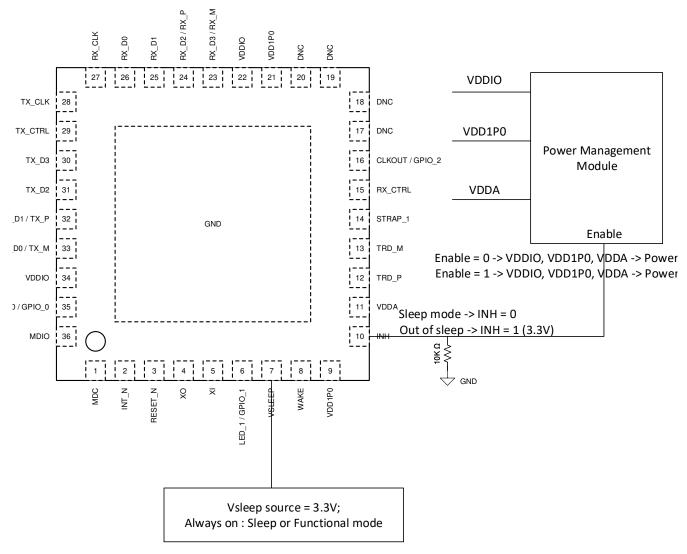



Figure 6-12. Required Implementation for Sleep Mode

### Note

Phy does not go into sleep mode if supply sources are not disabled as per above figure.

#### 6.4.6 State Transitions

#### 6.4.6.1 State Transition #1 - Standby to Normal

Autonomous Operation: The PHY will automatically transition to Normal state upon POR completion.

Managed Operation: The PHY will transition to Normal state out of Standby only after writing register <0x018C> = 0x001.

#### 6.4.6.2 State Transition #2 - Normal to Standby

The PHY can be forced back into Standby when in Normal state by writing register <0x018C> = 0x0010.

#### 6.4.6.3 State Transition #3 - Normal to Sleep

Sleep state can be entered either locally (pin/register-write) or by remote link-partner.

Local sleep entry for Master mode phy:

- Step 1 : Write bit[7] = 'b1 of register[0x018B].
- Step 2 : Write reg0x042F = 0x0007, reg0x041E = 0x0100
- Step 3: Make "wake" pin low and hold it low for sleep mode.

Local sleep entry for Slave mode phy:

- Step 1 : Write bit[8] = 'b0 of register[0x018B] register.
- Step 2 : Write bit[7] = 'b1 of register[0x018B] register.
- Step 3 : Write reg0x042F = 0x0007, reg0x041E = 0x0100
- Step 4: Make "wake" pin low and hold it low for sleep mode.

Remote sleep entry for Master mode phy:

- Master can be put to sleep remotely by slave PHY provided the below instructions when the device is already linked-up with the link partner.
- Step 1: Write bit[8] = 'b1 of register [0x018B] register and bit[7] = 'b1 of register[0x018B] register.
- Step 2: Make "wake" pin low
- Step 3: Phy will go into sleep mode with loss of energy on Line

Remote sleep entry for Slave mode phy:

- Step 1 : Write bit[7] = 'b1 of register[0x018B] register.
- Step 2 : Make "wake" pin low.
- Step 3: Phy will go into sleep mode with loss of energy on line (when master will go quite: no data, no send-s). This can be achieved by putting link-partner in managed mode (where device is not allowed to start link-up sequence).

#### Note

Phy will go into sleep mode only if power supplies are disconnected using INH signal as shown in figure **Required Implementation for Sleep Mode**.

### 6.4.6.4 State Transition #4 - Sleep to Normal

Sleep state can be exited either locally (pin/register-write) or by remote link-partner.

# **Local Sleep Exit**

Local sleep exit for Master mode PHY by :

Making "wake" pin high (3.3V).

Local sleep exit for Slave mode PHY by :

Making "wake" pin high (3.3V).



### **Remote Sleep Exit**

Device can be made to exit the sleep mode by link-partner by either of the following :

- 1. Remote sleep exit using Send-S symbols from link-partner.
- 2. Remote sleep exit using Send-T symbols from link-partner

Details of these procedures are in the following table :

Table 6-8. Remote Sleep Exit Procedures

| Method       | Device<br>Mode | Procedure                                                                                                                                                                                                                                                                                                                                                                                                | Required Link-partner<br>Cabability                                                                                                                                                                                                  |
|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using Send-S | Master         | Step 1 : Start IEEE defined Send-S pattern from link-partner for atleast 1.25ms.  Step 2 : Put link-partner in the normal mode to start the link-up.  Note : Link-partner with low VOD can limit the remote wake-up upto a maximum of 5m cable.                                                                                                                                                          | Link-partner needs to have a mode to send Send-S pattern on demand in Slave mode also. One possible way is: Step 1: Put link-partner in master mode for atleast 1.25ms. Step 2: Put link-partner in normal mode to start the link-up |
|              | Slave          | Step 1 : Start IEEE defined Send-S pattern from link-partner for atleast 1.25ms.  Step 2 : Put link-partner in the normal mode to start the link-up.  Note : Link-partner with low VOD can limit the remote wake-up upto a maximum of 5m cable.  Note : To keep the slave mode DP83TG720 in sleep mode, link-partner can be put in managed mode (where device is not allowed to start link-up sequence). | Any IEEE compliant link-<br>partner works, as master<br>mode link-partner is<br>supposed to send Send-S<br>signals to start the link-up                                                                                              |

Submit Document Feedback



# Table 6-8. Remote Sleep Exit Procedures (continued)

| Method       | Device<br>Mode | Procedure Procedures                                                                                                                   | Required Link-partner<br>Cabability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using Send-T | Master         | Step 1 : Enable Send-T pattern on link-partner for atleast 1.25ms. Step 2 : Put link-partner in the normal mode to start the link-up.  | Link-partner needs to have a mode to send Send-T pattern on demand.  Swing during Send-T mode at pins of link-partner must be greater than 0.92V for remote wake-up over 15m cable. Link-partner with lower VOD can limit the remote wake-up to 5m cable.  DP83T720 as link-partner can do the required with following steps:  Step 1: Enable Send-T pattern on DP83TG720 link-partner:  write reg[0x0405]=0x7400;  reg[0x0509]=0x4007 and  reg[0x0576]=0x0500  Step 2: After 100ms  disable send-T pattern on DP83TG720 link-partner:  write reg[0x0405]=x5800;  reg[0x0509]=0x4005 and  reg[0x0576]=0x0000 |
|              | Slave          | Step 1 : Enable Send-T pattern on link-partner for atleast 1.25ms.  Step 2 : Put link-partner in the normal mode to start the link-up. | Link-partner needs to have a mode to send Send-T pattern on demand.  Swing during Send-T mode at pins of link-partner must be greater than 0.92V for remote wake-up over 15m cable. Link-partner with lower VOD can limit the remote wake-up to 5m cable.  DP83T720 as link-partner can do the required with following steps:  Step 1: Enable Send-T pattern on DP83TG720 link-partner: write reg[0x0405]=0x7400; reg[0x0576]=0x0500 Step 2: After 100ms disable send-T pattern on DP83TG720 link-partner: write reg[0x0405]=x5800; reg[0x0509]=0x4005 and reg[0x0576]=0x0000                                |

### 6.4.7 Media Dependent Interface

#### 6.4.7.1 MDI Master and MDI Slave Configuration

MDI Master and MDI Slave are configured using either hardware bootstraps or through register access.

LED\_0 controls the MDI Master and MDI Slave bootstrap configuration. By default, MDI Slave mode is configured because there is an internal pulldown resistor on LED\_0 pin. If MDI Master mode configuration through hardware bootstrap is preferred, an external pullup resistor is required.

Additionally, bit[14] in the PMA\_CTRL2 egister controls the MDI Master and MDI Slave configuration. When this bit is set, MDI Master mode is enabled.

### 6.4.7.2 Auto-Polarity Detection and Correction

During the link training process, the DP83TG720S-Q1 as MDI receiver is able to detect polarity reversal and automatically correct for the error. Both master and slave detects can do the required correction in the receiver polarity.

Auto-Polarity Correction cannot be disabled on DP83TG720S-Q1

Submit Document Feedback

#### 6.4.8 MAC Interfaces

#### 6.4.8.1 Reduced Gigabit Media Independent Interface

The DP83TG720S-Q1 also supports Reduced Gigabit Media Independent Interface (RGMII) as specified by RGMII version 2.0. RGMII is designed to reduce the number of pins required to connect MAC and PHY. To accomplish this goal, the control signals are multiplexed. Both rising and falling edges of the clock are used to sample the control signal pin on transmit and receive paths. For 1Gbps operation, RX\_CLK and TX\_CLK operate at 125MHz.

The RGMII signals are summarized in Table 6-9:

Table 6-9. RGMII Signals

| FUNCTION        | PINS      |
|-----------------|-----------|
| Data Signala    | TX_D[3:0] |
| Data Signals    | RX_D[3:0] |
| Control Signals | TX_CTRL   |
|                 | RX_CTRL   |
| Clash Cimpala   | TX_CLK    |
| Clock Signals   | RX_CLK    |

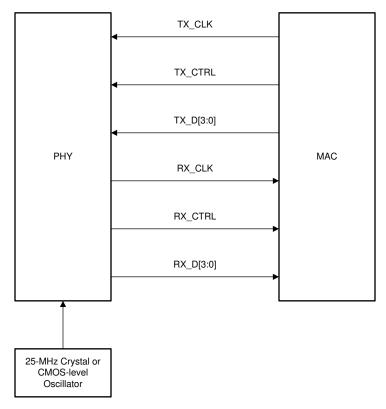



Figure 6-13. RGMII Connections



Table 6-10. RGMII Transmit Encoding

| TX_CTRL<br>(POSITIVE EDGE) | TX_CTRL<br>(NEGATIVE EDGE) | TX_D[3:0]         | DESCRIPTION                |
|----------------------------|----------------------------|-------------------|----------------------------|
| 0                          | 0                          | 0000 through 1111 | Normal Inter-Frame         |
| 0                          | 1                          | 0000 through 1111 | Reserved                   |
| 1                          | 0                          | 0000 through 1111 | Normal Data Transmission   |
| 1                          | 1                          | 0000 through 1111 | Transmit Error Propagation |

Table 6-11. RGMII Receive Encoding

| RX_CTRL<br>(POSITIVE EDGE) | RX_CTRL<br>(NEGATIVE EDGE) | RX_D[3:0]         | DESCRIPTION                |
|----------------------------|----------------------------|-------------------|----------------------------|
| 0                          | 0                          | 0000 through 1111 | Normal Inter-Frame         |
| 0                          | 1                          | 0000 through 1101 | Reserved                   |
| 0                          | 1                          | 1110              | False Carrier Indication   |
| 0                          | 1                          | 1111              | Reserved                   |
| 1                          | 0                          | 0000 through 1111 | Normal Data Reception      |
| 1                          | 1                          | 0000 through 1111 | Data Reception with Errors |

The DP83TG720S-Q1 supports in-band status indication to help simplify link status detection. Inter-frame signals on RX\_D[3:0] pins as specified in Table 6-12.

Table 6-12. RGMII In-Band Status

| RX_CTRL | RX_D3          | RX_D[2:1]                                                                        | RX_D0                                                            |
|---------|----------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|
| Noto:   | Duplex Status: | RX_CLK Clock Speed:<br>00 = 2.5MHz<br>01 = 25MHz<br>10 = 125MHz<br>11 = Reserved | Link Status: 0 = Link not established 1 = Valid link established |

RGMII MAC Interface for Gigabit Ethernet has stringent timing requirements to meet system level performance. To meet these timing requirements and to operate with different MACs over RGMII, the following requirements must be taken into consideration when designing PCB. TI recommends to check board level signal integrity by using the DP83TG720 IBIS model.

### **RGMII-TX Requirements**

- RGMII TX signals routed with controlled impedance of 500hm +/-15%.
- Max routing length limited to 5inches for better signal integrity performance.
- Figure 6-14 shows a RGMII interface requirements for TX\* signals. MAC RGMII driver output impedance of 500hm+/-20%.
- Skew for all RGMII TX signals at TP2, in Figure 6-14, less than ±500ps.
- Signal Integrity at TP1 and TP2, in Figure 6-14, can be verified with IBIS model simulation, that the following requirements are met:
  - At TP2, signal meeting rise/fall time of 1ns (20-80%) of signal amplitude.
  - Rise/fall time is monotonic between VIH/VIL level at TP2.

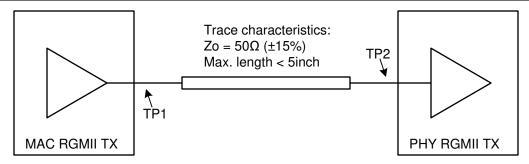



Figure 6-14. RGMII TX Requirements

## **RGMII-RX Requirements**

- RGMII RX signals routed with controlled impedance of 500hm +/-15%.
- Max routing length limited to 5inch for better signal integrity performance.
- No damping resistors added at TP3/TP4, in Figure 6-15, as that can impact signal integrity of RX signals.
- Figure 6-15 shows a RGMII interface requirements for RX\* signals. MAC RGMII driver output impedance is 500hm+/-20%.
- Signal Integrity at TP3 and TP4, in Figure 6-15, can be verified with IBIS model simulation, that the following requirements are met:
  - At TP4, signal meeting rise/fall time of 1ns (20-80%) of signal amplitude.
  - Rise/fall time is monotonic between VIH/VIL level at TP4.

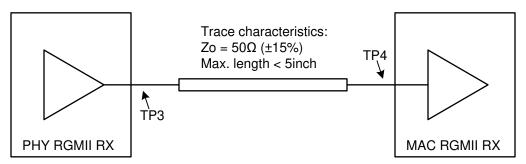
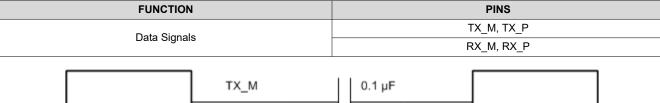



Figure 6-15. RGMII RX Requirements

### Note

- 1. We recommend routing RGMII on buried traces to minimize EMC emissions.
- 2. Buried traces connected with via placement as close as possible to the PHY and MAC.

### 6.4.8.2 Serial Gigabit Media Independent Interface


The Serial Gigabit Media Independent Interface (SGMII) provides a means for data transfer between MAC and PHY with significantly less signal pins (4 pins) compared to RGMII (12 pins). SGMII uses low-voltage differential signaling (LVDS) to reduce emissions and improve signal quality.

The DP83TG720S-Q1 SGMII is capable of operating in 4-wire mode. In 4-wire operation, two differential pairs are used to transmit and receive data. Clock and data recovery are performed in the MAC and in the PHY in the case of the RX and TX directions, respectively.

SGMII Auto-Negotitation can be disabled by setting bit[0] = 0b0 in the SGMII Configuration Register (SGMIICTL, address 0x608).

The SGMII signals are summarized in Table 6-13.

Table 6-13. SGMII Signals



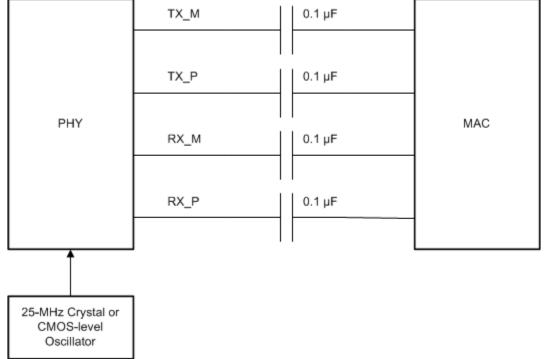



Figure 6-16. SGMII Connections

SGMII MAC Interface for Gigabit Ethernet has stringent signal integrity requirements to meet system level performance. The following requirements must be into consideration when designing PCB. TI recommends to check board level signal integrity by using the DP83TG720 IBIS model.

### **SGMII Signals Guidelines**

- Sgmii Tx and Rx signals routed on board with controlled differential impedance of 100ohms +/- 5%.
- Maximum routing length limited to 5inch for better signal integrity.
- Mismatch in routing length of p and n limited to 5mils.
- AC-coupling caps on rx lines placed close to rx p and rx m pins of PHY.
- AC-coupling caps on tx lines placed close to tx\_p and tx\_m pins of MAC.
- Signal integrity checked only at the pins of the receiver (PHY or MAC) using the high speed differential probe.

Submit Document Feedback



• At PHY's TX\_M and TX\_P following eye mask is met :




Figure 6-17. Sgmii PHY Receiver Mask Requirement

### 6.4.9 Serial Management Interface

The Serial Management Interface provides access to the DP83TG720S-Q1 internal register space for status information and configuration. The SMI is compatible with IEEE 802.3 clause 22. The implemented register set consists of the registers required by the IEEE 802.3 plus several others to provide additional visibility and controllability of the DP83TG720S-Q1.

The SMI includes the management clock (MDC) and the management input and output data pin (MDIO). MDC is sourced by the external management entity, also called Station (STA). MDC is not expected to be continuous, and can be turned off by the external management entity when the bus is idle.

MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on the rising edge of the MDC. MDIO pin requires a pullup resistor (2.2k $\Omega$ ), which pulls MDIO high during IDLE and turnaround.

Up to 9 DP83TG720S-Q1 PHYs can share a common SMI bus. To distinguish between the PHYs, a 3-bit address is used. During power-up-reset, the DP83TG720S-Q1 latches the PHY AD configuration pins to determine its address.

The management entity must not start an SMI transaction in the first cycle after power-up-reset. To maintain valid operation, the SMI bus must remain inactive at least one MDC cycle after hard reset is deasserted. In normal MDIO transactions, the register address is taken directly from the management-frame reg\_addr field, thus allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific). The data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern makes sure that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no device can actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TG720S-Q1 drives the MDIO with a zero for the second bit of turnaround and follows this with the required data.

For write transactions, the station-management entity writes data to the addressed DP83TG720S-Q1, thus eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by inserting <10>.

Table 6-14. SMI Protocol Structure

| SMI PROTOCOL    | <idle> <start> <op code=""> <device address=""> <reg address=""> <turnaround> <data> <idle></idle></data></turnaround></reg></device></op></start></idle> |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read Operation  | <idle>&lt;01&gt;&lt;10&gt;<aaaaa><rrrrr><z0><xxxx xxxx=""><idle></idle></xxxx></z0></rrrrr></aaaaa></idle>                                                |
| Write Operation | <idle>&lt;01&gt;<aaaaa><rrrrr>&lt;10&gt;<xxxx xxxx=""><idle></idle></xxxx></rrrrr></aaaaa></idle>                                                         |

#### 6.4.9.1 Direct Register Access

Direct register access can be used for the first 31 registers (0x0h through 0x1Fh).

### 6.4.9.2 Extended Register Space Access

The DP83TG720S-Q1 SMI function supports read and write access to the extended register set using registers REGCR (0x000Dh) and ADDAR (0x000Eh) and the MDIO Manageable Device (MMD) indirect method defined in IEEE 802.3ah Draft for Clause 22 for accessing the Clause 45 extended register set.

#### Note

Registers with addresses above 0x001F require indirect access. For indirect access, a sequence of register writes must be followed. The MMD value defines the Device Address (DEVAD) of the register set. The DEVAD must be configured in the register 0x000D (REGCR) bits [4:0] for indirect access

The DP83TG720S-Q1 supports 4 MMD device addresses. The 4 MMD register spaces are:

- 1. MMD1F (Vendor specific registers): DEVAD [4:0] = '11111'
- MMD1 (IEEE 802.3az defined registers): DEVAD [4:0] = '00001'

Submit Document Feedback Product Folder Links: DP83TG720S-Q1

- www.ti.com
- 3. MMD3 (IEEE 802.3az defined registers): DEVAD [4:0] = '00011'
- 4. MMD3 (IEEE 802.3az defined registers): DEVAD [4:0] = '00111'

### Table 6-15. MMD Register Space Division

| MMD Register Space | Register Address Range |
|--------------------|------------------------|
| MMD1F              | 0x000 - 0x0EFD         |
| MMD1               | 0x1000 - 0x1904        |
| MMD3               | 0x3000 - 0x390D        |
| MMD7               | 0x7000 - 0x7200        |

#### Note

For MMD1/3/7, most significant nibble of the register address is used to denote the respective MMD space. This should be ignored during actual register access operation. For example to access register 0x1904 use 0x0904 as the register address and x01 as the MMD.

The following sections describe how to perform operations on the extended register set using register REGCR and ADDAR.

#### 6.4.9.2.1 Write Operation (No Post Increment)

To write a register in the extened register set:

| Instruction                                                                                            | Example: Set reg 0x0170 = 0C50      |
|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR (0x0D).          | Write register 0x0D to value 0x001F |
| 2. Write the desired register address to register ADDAR (0x0E).                                        | Write register 0x0E to value 0x0170 |
| 3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR. | Write register 0x0D to value 0x401F |
| 4. Write the content of the desired extended register set register to register ADDAR.                  | Write register 0x0E to value 0x0C50 |

Subsequent writes to register ADDAR (step 4) continue to rewrite the register selected by the value in the address register.

### Note

Steps (1) and (2) can be skipped if the address register was previously configured.

### 6.4.9.2.2 Read Operation (No Post Increment)

To read a register in the extended register set:

| Instruction                                                                                            | Example: Read 0x0170                |
|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.                 | Write register 0x0D to value 0x001F |
| 2. Write the desired register address to register ADDAR.                                               | Write register 0x0E to value 0x0170 |
| 3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR. | Write register 0x0D to value 0x401F |
| 4. Read the content of the desired extended register set register to register ADDAR.                   | Read register 0x0E                  |



Subsequent reads from register ADDAR (step 4) continue reading the register selected by the value in the address register.

Note

Steps (1) and (2) can be skipped if the address register was previously configured.

#### 6.4.9.2.3 Write Operation (Post Increment)

To write a register in the extended register set and automatically increment the address register to the next higher value following the write operation:

| Instruction                                                                                                                                                                                                  | Example: Set reg 0x0170 = 0C50 & reg 0x0171 = 0x0011 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.                                                                                                                       | Write register 0x0D to value 0x001F                  |
| 2. Write the register address from register ADDAR.                                                                                                                                                           | Write register 0x0E to value 0x0170                  |
| 3. Write the value 0x801F (data, post increment on reads and writes function field = 10, DEVAD = 31) or the value 0xC01F (data, post increment on writes function field = 11. DEVAD = 31) to register REGCR. | Write register 0x0D to value 0x801F                  |
| 4. Write the content of the desired extended register set register to register ADDAR.                                                                                                                        | Write register 0x0E to value 0x0C50                  |
| 5. Subsequent writes to register ADDAR (step 4) writes the next higher addressed data register selected by the value of the address register; the address register is incremented after each access.         | Write register 0x0E to value 0x0011                  |

Step 4 Writes register 0x0170 to 0x0C50 and because post increment is enabled, Step 5 writes register 0x0171 to 0x0011.

#### 6.4.9.2.4 Read Operation (Post Increment)

To read a register in the extended register set and automatically increment the address register to the next higher value following the read operation:

| Instruction                                                                                                                                                                                        | Example: Read register 0x0170 & 0x0171 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.                                                                                                             | Write register 0x0D to value 0x001F    |
| 2. Write the desired register address to register ADDAR.                                                                                                                                           | Write register 0x0E to value 0x0170    |
| 3. Write the value 0x801F (data, post increment on reads and writes function field = 10, DEVAD = 31) to register REGCR.                                                                            | Write register 0x0D to value 0x801F    |
| 4. Read the content of the desired extended register set register to register ADDAR.                                                                                                               | Read register 0x0E                     |
| 5. Subsequent reads to register ADDAR (step 4) reads the next higher addressed data register selected by the value of the address register; the address register is incremented after each access. | Read register 0x0E                     |

Step 4 Reads register 0x0170 and because post increment is enabled, Step 5 reads register 0x0171.

Product Folder Links: DP83TG720S-Q1

### 6.5 Programming

### 6.5.1 Strap Configuration

The DP83TG720S-Q1 uses functional pins as strap options to place the device into specific modes of operation. The values of these pins are sampled at power up and hardware reset (through either the RESET\_N pin or register access). The strap pins support 2-levels and 3-levels, which are described in greater detail below. Configuration of the device is done through strapping or through serial management interface.

#### Note

- Strap pins are functional pins after reset is deasserted and must not be connected directly to VCC or GND.
- Pull up strap resistors are sufficient to enter different strap modes.
- Pull down strap resistor can have application for LED pin straps. Refer to LED Configuration section.

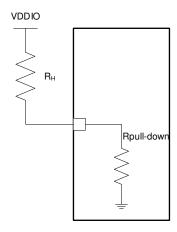



Figure 6-18. Strap Circuit

Table 6-16. Recommended 3-level Strap Resistor Ratios

| MODE | Recommended RH (kΩ) <sup>1</sup> for VDDIO = 3.3V | Recommended RH (kΩ) <sup>2</sup> for VDDIO = 2.5V | Recommended RH (kΩ) <sup>1</sup><br>for VDDIO = 1.8V |
|------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------|
| 1    | OPEN                                              | OPEN                                              | OPEN                                                 |
| 2    | 13                                                | 12                                                | 4                                                    |
| 3    | 4.5                                               | 2                                                 | 0.8                                                  |

- 1. 10% resistor accuracy
- 2. 1% resistor accuracy

Table 6-17. Recommended 2-level Strap Resistor

| MODE | Recommended RH (kΩ) <sup>12</sup> |
|------|-----------------------------------|
| 1    | OPEN                              |
| 2    | 2.49                              |

- 1. 10% resistor accuracy
- 2. To gain more margin in customer application for 1.8V VDDIO, either 2.1K+/-10% pull-up can be used or resistor accuracy of 2.49K resistor can be limited to 1%.



The following table describes the DP83TG720S-Q1 configuration bootstraps:

# Table 6-18. 2-level Bootstraps

| PIN NAME | PIN NO. | STRAP MODE  | STRAP FUNCTION | DESCRIPTION                                 |  |
|----------|---------|-------------|----------------|---------------------------------------------|--|
| RX_D0    | 26      | 1 (default) | MAC[0] = 0     | MAC Interface Selection [0]. Refer to Table |  |
|          |         | 2           | MAC[0] = 1     | 6-19 for full description.                  |  |
| RX_D1    | 25      | 1 (default) | MAC[1] = 0     | MAC Interface Selection [1]. Refer to Table |  |
|          |         | 2           | MAC[1] = 1     | 6-19 for full description.                  |  |
| RX_D2    | 24      | 1 (default) | MAC[2] = 0     | MAC Interface Selection [2]. Refer to Table |  |
|          |         | 2           | MAC[2] = 1     | 6-19 for full description.                  |  |
| LED_0    | 35      | 1 (default) | MS = 0         | MDI Master Slave Select.                    |  |
|          |         | 2           | MS = 1         | MS = 0 Slave<br>MS = 1 Master               |  |
| LED_1    | 6       | 1 (default) | AUTO = 0       | Autonomous Disable                          |  |
|          |         | 2           | AUTO = 1       | AUTO = 0 Autonomous AUTO = 1 Managed        |  |

Table 6-19. MAC Interface Selection Bootstraps

| Table 6-13. MAO Interface delection Bootstraps |        |        |                              |  |
|------------------------------------------------|--------|--------|------------------------------|--|
| MAC[2]                                         | MAC[1] | MAC[0] | DESCRIPTION                  |  |
| 0                                              | 0      | 0      | SGMII (4-wire)               |  |
| 0                                              | 0      | 1      | RESERVED                     |  |
| 0                                              | 1      | 0      | RESERVED                     |  |
| 0                                              | 1      | 1      | RESERVED                     |  |
| 1                                              | 0      | 0      | RGMII (Align Mode)           |  |
| 1                                              | 0      | 1      | RGMII (TX Shift Mode)        |  |
| 1                                              | 1      | 0      | RGMII (TX and RX Shift Mode) |  |
| 1                                              | 1      | 1      | RGMII (RX Shift Mode)        |  |

# Table 6-20. 3-Level Bootstrap: PHY Address

| Tubic o 20. o Level Bootstrap. I III Addition |                       |                      |                          |  |
|-----------------------------------------------|-----------------------|----------------------|--------------------------|--|
| PHY_AD[3:0]                                   | RX_CTRL<br>STRAP MODE | STRP_1<br>STRAP MODE | DESCRIPTION              |  |
| 0000                                          | 1                     | 1                    | PHY Address: 0x0000 (0)  |  |
| 0001                                          | -                     | -                    | RESERVED                 |  |
| 0010                                          | -                     | -                    | RESERVED                 |  |
| 0011                                          | -                     | -                    | RESERVED                 |  |
| 0100                                          | 2                     | 1                    | PHY Address: 0x0004 (4)  |  |
| 0101                                          | 3                     | 1                    | PHY Address: 0x0005 (5)  |  |
| 0110                                          | -                     | -                    | RESERVED                 |  |
| 0111                                          | -                     | -                    | RESERVED                 |  |
| 1000                                          | 1                     | 2                    | PHY Address: 0x0008 (8)  |  |
| 1001                                          | -                     | -                    | RESERVED                 |  |
| 1010                                          | 1                     | 3                    | PHY Address: 0x000A (10) |  |
| 1011                                          | -                     | -                    | RESERVED                 |  |
| 1100                                          | 2                     | 2                    | PHY Address: 0x000C (12) |  |
| 1101                                          | 3                     | 2                    | PHY Address: 0x000D (13) |  |
| 1110                                          | 2                     | 3                    | PHY Address: 0x000E (14) |  |
| 1111                                          | 3                     | 3                    | PHY Address: 0x000F (15) |  |

### 6.5.2 LED Configuration

The DP83TG720S-Q1 supports up to three configurable Light Emitting Diode (LED) pins: LED\_0, LED\_1, and LED\_2 (CLKOUT). Several functions can be multiplexed onto the LEDs for different modes of operation. LED operations are selected using registers 0x0450 and 0x0451.

#### Note

CLKOUT has 25MHz clock output as default. If required, it can be configured to LED2 using register 0x0453.

Because the LED output pins are also used as strap pins, external components required for strapping and the user must consider the LED usage to avoid contention. Specifically, when the LED outputs are used to drive LEDs directly, the active state of each output driver is dependent on the logic level sampled by the corresponding input upon power up or hardware reset.

Figure 6-19 shows the two proper ways of connecting LEDs directly to the DP83TG720S-Q1.




Figure 6-19. Example Strap Connections

### 6.5.3 PHY Address Configuration

The DP83TG720S-Q1 can be set to respond to any of 9 possible PHY addresses through bootstrap pins. The PHY address is latched into the device upon power-up or hardware reset. Each DP83TG720S-Q1 or port sharing PHY on the serial management bus in the system must have a unique PHY address. The DP83TG720S-Q1 supports PHY address as described in Table 6-20.

By default, the DP83TG720S-Q1 will latch to a PHY address of 0 ([0000]). This address can be changed by adding pullup resistors to bootstrap pins found in Table 6-18.

Submit Document Feedback

### 6.6 Register Maps

### 6.6.1 Register Access Summary

There are two different methods for accessing registers within the field. Direct register access method is only allowed for the first 31 registers (0x0h through 0x1Fh) of MMD1F register space. Registers beyond 0x1Fh must be accessed by use of the Indirect Method (Extended Register Space) described in *Section 6.4.9.2*.

Table 6-21. MMD Register Space Division

| MMD REGISTER SPACE | REGISTER ADDRESS RANGE |
|--------------------|------------------------|
| MMD1F              | 0x000 - 0x0EFD         |
| MMD1               | 0x1000 - 0x1904        |
| MMD3               | 0x3000 - 0x390D        |
| MMD7               | 0x7000 - 0x7200        |

Table 6-22. Register Access Summary

| REGISTER FIELD REGISTER ACCESS METHODS |                                                                                                                                                                                                                                                           |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| REGISTER FIELD                         | REGISTER ACCESS METHODS                                                                                                                                                                                                                                   |  |  |  |
|                                        | Direct Access                                                                                                                                                                                                                                             |  |  |  |
| 0x0h through 0x1Fh                     | Indirect Access, MMD1F = '11111' <b>Example:</b> to read register 0x17h in MMD1F field with no post increment Step 1) write 0x1Fh to register 0xDh Step 2) write 0x17h to register 0xEh Step 3) write 0x401Fh to register 0xDh Step 4) read register 0xEh |  |  |  |
| MMD1F Field<br>0x20h - 0xFFFh          | Indirect Access, MMD1F = '11111'  Example: to read register 0x462h in MMD1F field with no post increment  Step 1) write 0x1Fh to register 0xDh  Step 2) write 0x462h to register 0xEh  Step 3) write 0x401Fh to register 0xDh  Step 4) read register 0xEh |  |  |  |
| MMD1 Field<br>0x0000h - 0x0FFFh        | Indirect Access, MMD1 = '00001'  Example: to read register 0x7h in MMD1 field with no post increment  Step 1) write 0x1h to register 0xDh  Step 2) write 0x7h to register 0xEh  Step 3) write 0x4001h to register 0xDh  Step 4) read register 0xEh        |  |  |  |



### 6.6.2 DP83TG720 Registers

Table 6-23 lists the memory-mapped registers for the DP83TG720 registers. All register offset addresses not listed in Table 6-23 should be considered as reserved locations and the register contents should not be modified.

Table 6-23. DP83TG720 Registers

| Offset | Acronym              | Register Name | Section          |
|--------|----------------------|---------------|------------------|
| 0h     | BMCR                 |               | Section 6.6.2.1  |
| 1h     | BMSR                 |               | Section 6.6.2.2  |
| 2h     | PHYID1               |               | Section 6.6.2.3  |
| 3h     | PHYID2               |               | Section 6.6.2.4  |
| Dh     | REGCR                |               | Section 6.6.2.5  |
| Eh     | ADDAR                |               | Section 6.6.2.6  |
| 10h    | MII_REG_10           |               | Section 6.6.2.7  |
| 11h    | MII_REG_11           |               | Section 6.6.2.8  |
| 12h    | MII_REG_12           |               | Section 6.6.2.9  |
| 13h    | MII_REG_13           |               | Section 6.6.2.10 |
| 16h    | MII_REG_16           |               | Section 6.6.2.11 |
| 18h    | MII_REG_18           |               | Section 6.6.2.12 |
| 19h    | MII_REG_19           |               | Section 6.6.2.13 |
| 1Eh    | MII_REG_1E           |               | Section 6.6.2.14 |
| 1Fh    | MII_REG_1F           |               | Section 6.6.2.15 |
| 180h   | LSR                  |               | Section 6.6.2.16 |
| 18Bh   | LPS_CFG2             |               | Section 6.6.2.17 |
| 18Ch   | LPS_CFG3             |               | Section 6.6.2.18 |
| 18Eh   | LPS_STATUS           |               | Section 6.6.2.19 |
| 30Fh   | TDR_TC12             |               | Section 6.6.2.20 |
| 405h   | A2D_REG_05           |               | Section 6.6.2.21 |
| 41Eh   | A2D_REG_30           |               | Section 6.6.2.22 |
| 428h   | A2D_REG_40           |               | Section 6.6.2.23 |
| 429h   | A2D_REG_41           |               | Section 6.6.2.24 |
| 42Ch   | A2D_REG_44           |               | Section 6.6.2.25 |
| 42Fh   | A2D_REG_47           |               | Section 6.6.2.26 |
| 430h   | A2D_REG_48           |               | Section 6.6.2.27 |
| 442h   | A2D_REG_66           |               | Section 6.6.2.28 |
| 450h   | LEDS_CFG_1           |               | Section 6.6.2.29 |
| 451h   | LEDS_CFG_2           |               | Section 6.6.2.30 |
| 452h   | IO_MUX_CFG_1         |               | Section 6.6.2.31 |
| 453h   | IO_MUX_CFG_2         |               | Section 6.6.2.32 |
| 456h   | IO_CONTROL_3         |               | Section 6.6.2.33 |
| 45Dh   | SOR_VECTOR_1         |               | Section 6.6.2.34 |
| 45Eh   | SOR_VECTOR_2         |               | Section 6.6.2.35 |
| 468h   | MONITOR_CTRL2        |               | Section 6.6.2.36 |
| 46Ah   | MONITOR_CTRL4        |               | Section 6.6.2.37 |
| 47Bh   | MONITOR_STAT1        |               | Section 6.6.2.38 |
| 510h   | RS_DECODER           |               | Section 6.6.2.39 |
| 52Bh   | TRAINING_RX_STATUS_7 |               | Section 6.6.2.40 |
| 543h   | LINK_QUAL_1          |               | Section 6.6.2.41 |
| 544h   | LINK_QUAL_2          |               | Section 6.6.2.42 |



# Table 6-23. DP83TG720 Registers (continued)

| Offset       | Acronym Register Name      | Section                           |
|--------------|----------------------------|-----------------------------------|
| 545h         | LINK_DOWN_LATCH_STAT       | Section 6.6.2.43                  |
|              |                            |                                   |
| 547h<br>548h | LINK_QUAL_3                | Section 6.6.2.44                  |
|              | LINK_QUAL_4                | Section 6.6.2.45 Section 6.6.2.46 |
| 552h         | RS_DECODER_FRAME_STAT_2    | <del>,</del>                      |
| 553h         | RS_DECODER_FRAME_STAT_3    | Section 6.6.2.47                  |
| 600h         | RGMII_CTRL                 | Section 6.6.2.48                  |
| 601h         | RGMII_FIFO_STATUS          | Section 6.6.2.49                  |
| 602h         | RGMII_DELAY_CTRL           | Section 6.6.2.50                  |
| 608h         | SGMII_CTRL_1               | Section 6.6.2.51                  |
| 60Ah         | SGMII_STATUS               | Section 6.6.2.52                  |
| 60Ch         | SGMII_CTRL_2               | Section 6.6.2.53                  |
| 60Dh         | SGMII_FIFO_STATUS          | Section 6.6.2.54                  |
| 618h         | PRBS_STATUS_1              | Section 6.6.2.55                  |
| 619h         | PRBS_CTRL_1                | Section 6.6.2.56                  |
| 61Ah         | PRBS_CTRL_2                | Section 6.6.2.57                  |
| 61Bh         | PRBS_CTRL_3                | Section 6.6.2.58                  |
| 61Ch         | PRBS_STATUS_2              | Section 6.6.2.59                  |
| 61Dh         | PRBS_STATUS_3              | Section 6.6.2.60                  |
| 61Eh         | PRBS_STATUS_4              | Section 6.6.2.61                  |
| 620h         | PRBS_STATUS_6              | Section 6.6.2.62                  |
| 622h         | PRBS_STATUS_8              | Section 6.6.2.63                  |
| 623h         | PRBS_STATUS_9              | Section 6.6.2.64                  |
| 624h         | PRBS_CTRL_4                | Section 6.6.2.65                  |
| 625h         | PRBS_CTRL_5                | Section 6.6.2.66                  |
| 626h         | PRBS_CTRL_6                | Section 6.6.2.67                  |
| 627h         | PRBS_CTRL_7                | Section 6.6.2.68                  |
| 628h         | PRBS_CTRL_8                | Section 6.6.2.69                  |
| 629h         | PRBS_CTRL_9                | Section 6.6.2.70                  |
| 62Ah         | PRBS_CTRL_10               | Section 6.6.2.71                  |
| 638h         | CRC_STATUS                 | Section 6.6.2.72                  |
| 639h         | PKT_STAT_1                 | Section 6.6.2.73                  |
| 63Ah         | PKT_STAT_2                 | Section 6.6.2.74                  |
| 63Bh         | PKT_STAT_3                 | Section 6.6.2.75                  |
| 63Ch         | PKT_STAT_4                 | Section 6.6.2.76                  |
| 63Dh         | PKT_STAT_5                 | Section 6.6.2.77                  |
| 63Eh         | PKT_STAT_6                 | Section 6.6.2.78                  |
| 871h         | SQI_REG_1                  | Section 6.6.2.79                  |
| 874h         | DSP_REG_74                 | Section 6.6.2.80                  |
| 875h         | DSP_REG_75                 | Section 6.6.2.81                  |
| 1000h        | PMA_PMD_CONTROL_1          | Section 6.6.2.82                  |
| 1007h        | PMA_PMD_CONTROL_2          | Section 6.6.2.83                  |
| 1009h        | PMA_PMD_TRANSMIT_DISABL E  | Section 6.6.2.84                  |
| 100Bh        | PMA_PMD_EXTENDED_ABILIT Y2 | Section 6.6.2.85                  |



Table 6-23. DP83TG720 Registers (continued)

| Offset | Acronym                   | Register Name | Section           |
|--------|---------------------------|---------------|-------------------|
| 1012h  | PMA_PMD_EXTENDED_ABILIT Y |               | Section 6.6.2.86  |
| 1834h  | PMA_PMD_CONTROL           |               | Section 6.6.2.87  |
| 1900h  | PMA_CONTROL               |               | Section 6.6.2.88  |
| 1901h  | PMA_STATUS                |               | Section 6.6.2.89  |
| 1902h  | TRAINING                  |               | Section 6.6.2.90  |
| 1903h  | LP_TRAINING               |               | Section 6.6.2.91  |
| 1904h  | TEST_MODE_CONTROL         |               | Section 6.6.2.92  |
| 3900h  | PCS_CONTROL               |               | Section 6.6.2.93  |
| 3901h  | PCS_STATUS                |               | Section 6.6.2.94  |
| 3902h  | PCS_STATUS_2              |               | Section 6.6.2.95  |
| 3904h  | OAM_TRANSMIT              |               | Section 6.6.2.96  |
| 3905h  | OAM_TX_MESSAGE_1          |               | Section 6.6.2.97  |
| 3906h  | OAM_TX_MESSAGE_2          |               | Section 6.6.2.98  |
| 3907h  | OAM_TX_MESSAGE_3          |               | Section 6.6.2.99  |
| 3908h  | OAM_TX_MESSAGE_4          |               | Section 6.6.2.100 |
| 3909h  | OAM_RECEIVE               |               | Section 6.6.2.101 |
| 390Ah  | OAM_RX_MESSAGE_1          |               | Section 6.6.2.102 |
| 390Bh  | OAM_RX_MESSAGE_2          |               | Section 6.6.2.103 |
| 390Ch  | OAM_RX_MESSAGE_3          |               | Section 6.6.2.104 |
| 390Dh  | OAM_RX_MESSAGE_4          |               | Section 6.6.2.105 |
| 7200h  | AN_CFG                    |               | Section 6.6.2.106 |

Complex bit access types are encoded to fit into small table cells. Table 6-24 shows the codes that are used for access types in this section.

Table 6-24. DP83TG720 Access Type Codes

| Access Type            | Code      | Description                            |  |  |  |
|------------------------|-----------|----------------------------------------|--|--|--|
| Read Type              | Read Type |                                        |  |  |  |
| R                      | R         | Read                                   |  |  |  |
| Write Type             |           |                                        |  |  |  |
| W                      | W         | Write                                  |  |  |  |
| W0C                    | W<br>0C   | Write 0 to clear                       |  |  |  |
| W0S                    | W<br>0S   | Write<br>0 to set                      |  |  |  |
| WMC                    | W         | Write                                  |  |  |  |
| WMC,0                  | W         | Write                                  |  |  |  |
| WMC,1                  | W         | Write                                  |  |  |  |
| WSC                    | W         | Write                                  |  |  |  |
| WSC,0                  | W         | Write                                  |  |  |  |
| Reset or Default Value |           |                                        |  |  |  |
| -n                     |           | Value after reset or the default value |  |  |  |



# 6.6.2.1 BMCR Register (Offset = 0h) [Reset = 0140h]

BMCR is shown in Figure 6-20 and described in Table 6-25.

Return to the Summary Table.

# Figure 6-20. BMCR Register

|           |               |          | •        |            |          |          |          |
|-----------|---------------|----------|----------|------------|----------|----------|----------|
| 15        | 14            | 13       | 12       | 11         | 10       | 9        | 8        |
| mii_reset | loopback      | RESERVED | RESERVED | power_down | isolate  | RESERVED | RESERVED |
| R/WMC-0h  | R/W-0h        | R-0h     | R-0h     | R/W-0h     | R/W-0h   | R-0h     | R-0h     |
| 7         | 6             | 5        | 4        | 3          | 2        | 1        | 0        |
| RESERVED  | speed_sel_msb | RESERVED |          |            | RESERVED |          |          |
| R-0h      | R-1h          | R-0h     |          |            | R-0h     |          |          |

## Table 6-25. BMCR Register Field Descriptions

| Bit | Field         | Туре  | Reset | Description                                                                       |
|-----|---------------|-------|-------|-----------------------------------------------------------------------------------|
| 15  | mii_reset     | R/WMC | 0h    | 1b = Digital in reset and all MII regs (0x0 - 0xF) reset to default 0b = No reset |
| 14  | loopback      | R/W   | 0h    | 1b = MII loopback<br>0b = No MII loopback                                         |
| 13  | RESERVED      | R     | 0h    | Reserved                                                                          |
| 12  | RESERVED      | R     | 0h    | Reserved                                                                          |
| 11  | power_down    | R/W   | 0h    | 1b = Power down via register or pin 0b = Normal mode                              |
| 10  | isolate       | R/W   | 0h    | 1b = MAC isolate mode (No output to MAC from the PHY) 0b = Normal Mode            |
| 9   | RESERVED      | R     | 0h    | Reserved                                                                          |
| 8   | RESERVED      | R     | 0h    | Reserved                                                                          |
| 7   | RESERVED      | R     | 0h    | Reserved                                                                          |
| 6   | speed_sel_msb | R     | 1h    | 0b= Reserved<br>1b= 1000 Mb/s                                                     |
| 5   | RESERVED      | R     | 0h    | Reserved                                                                          |
| 4-0 | RESERVED      | R     | 0h    | Reserved                                                                          |



### 6.6.2.2 BMSR Register (Offset = 1h) [Reset = 0141h]

BMSR is shown in Figure 6-21 and described in Table 6-26.

Return to the Summary Table.

# Figure 6-21. BMSR Register

|                            |                         |               | 0            | -            |             |               |                         |
|----------------------------|-------------------------|---------------|--------------|--------------|-------------|---------------|-------------------------|
| 15                         | 14                      | 13            | 12           | 11           | 10          | 9             | 8                       |
| RESERVED                   | RESERVED                | RESERVED      | RESERVED     | RESERVED     | RESERVED    | RESERVED      | extended_statu<br>s     |
| R-0h                       | R-0h                    | R-0h          | R-0h         | R-0h         | R-0h        | R-0h          | R-1h                    |
| 7                          | 6                       | 5             | 4            | 3            | 2           | 1             | 0                       |
| unidirectional_a<br>bility | preamble_supre<br>ssion | aneg_complete | remote_fault | aneg_ability | link_status | jabber_detect | extended_capa<br>bility |
| R-0h                       | R-1h                    | R-0h          | R/W0C-0h     | R-0h         | R/W0S-0h    | R/W0C-0h      | R-1h                    |

# Table 6-26. BMSR Register Field Descriptions

| Bit | Field                  | Туре  | Reset | Description                                                                                                                      |
|-----|------------------------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 15  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 14  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 13  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 12  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 11  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 10  | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 9   | RESERVED               | R     | 0h    | Reserved                                                                                                                         |
| 8   | extended_status        | R     | 1h    | 1b = Extended status information in Register 15 0b = No extended status information in Register 15                               |
| 7   | unidirectional_ability | R     | 0h    | Reserved                                                                                                                         |
| 6   | preamble_supression    | R     | 1h    | 1b = PHY accepts management frames with preamble suppressed. 0b = PHY does not accept management frames with preamble suppressed |
| 5   | aneg_complete          | R     | 0h    | Reserved                                                                                                                         |
| 4   | remote_fault           | R/W0C | 0h    | Reserved                                                                                                                         |
| 3   | aneg_ability           | R     | 0h    | Reserved                                                                                                                         |
| 2   | link_status            | R/W0S | 0h    | 1b = link is up<br>0b = link down                                                                                                |
| 1   | jabber_detect          | R/W0C | 0h    | Reserved                                                                                                                         |
| 0   | extended_capability    | R     | 1h    | 1b = extended register capabilities 0b = basic register set capabilities only                                                    |

Submit Document Feedback



# 6.6.2.3 PHYID1 Register (Offset = 2h) [Reset = 2000h]

PHYID1 is shown in Figure 6-22 and described in Table 6-27.

Return to the Summary Table.

# Figure 6-22. PHYID1 Register



# Table 6-27. PHYID1 Register Field Descriptions

| Bit  | Field     | Туре | Reset | Description                    |
|------|-----------|------|-------|--------------------------------|
| 15-0 | oui_21_16 | R    | 2000h | Unique identifier for the part |



# 6.6.2.4 PHYID2 Register (Offset = 3h) [Reset = A284h]

PHYID2 is shown in Figure 6-23 and described in Table 6-28.

Return to the Summary Table.

# Figure 6-23. PHYID2 Register

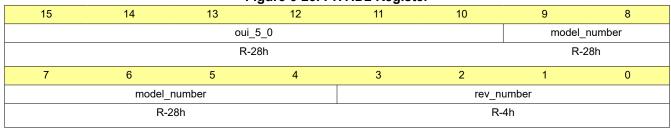
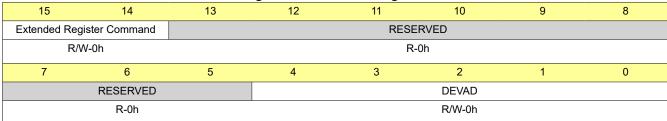



Table 6-28. PHYID2 Register Field Descriptions

| Bit   | Field        | Туре | Reset | Description                    |
|-------|--------------|------|-------|--------------------------------|
| 15-10 | oui_5_0      | R    | 28h   | Unique identifier for the part |
| 9-4   | model_number | R    | 28h   | Unique identifier for the part |
| 3-0   | rev_number   | R    | 4h    | Unique identifier for the part |

Submit Document Feedback




# 6.6.2.5 REGCR Register (Offset = Dh) [Reset = 0000h]

REGCR is shown in Figure 6-24 and described in Table 6-29.

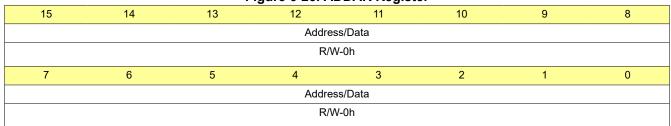
Return to the Summary Table.

# Figure 6-24. REGCR Register



# Table 6-29. REGCR Register Field Descriptions

| Bit   | Field                        | Туре | Reset | Description                                                                                                                                |
|-------|------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 15-14 | Extended Register<br>Command | R/W  | *     | 00b = Address<br>01b = Data, no post increment<br>10b = Data, post increment on read and write<br>11b = Data, post increment on write only |
| 13-5  | RESERVED                     | R    | 0h    | Reserved                                                                                                                                   |
| 4-0   | DEVAD                        | R/W  | 0h    | MMD field for indirect register access                                                                                                     |




### 6.6.2.6 ADDAR Register (Offset = Eh) [Reset = 0000h]

ADDAR is shown in Figure 6-25 and described in Table 6-30.

Return to the Summary Table.

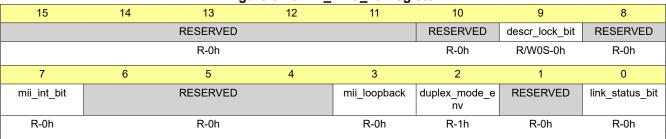
# Figure 6-25. ADDAR Register



# Table 6-30. ADDAR Register Field Descriptions

| Bit  | Field        | Туре | Reset | Description                                     |
|------|--------------|------|-------|-------------------------------------------------|
| 15-0 | Address/Data | R/W  | 0h    | Address Data field for indirect register access |

Submit Document Feedback




# 6.6.2.7 MII\_REG\_10 Register (Offset = 10h) [Reset = 0004h]

MII\_REG\_10 is shown in Figure 6-26 and described in Table 6-31.

Return to the Summary Table.

Figure 6-26. MII\_REG\_10 Register



### Table 6-31. MII\_REG\_10 Register Field Descriptions

| Bit   | Field           | Туре  | Reset | Description                                                                 |
|-------|-----------------|-------|-------|-----------------------------------------------------------------------------|
| 15-11 | RESERVED        | R     | 0h    | Reserved                                                                    |
| 10    | RESERVED        | R     | 0h    | Reserved                                                                    |
| 9     | descr_lock_bit  | R/W0S | 0h    | 1b = Descrambler is locked<br>0b = Descrmabler is unlocked atleast once     |
| 8     | RESERVED        | R     | 0h    | Reserved                                                                    |
| 7     | mii_int_bit     | R     | 0h    | 1b = Interrupt pin had been set 0b = Interrupts pin not set Cleared on Read |
| 6-4   | RESERVED        | R     | 0h    | Reserved                                                                    |
| 3     | mii_loopback    | R     | 0h    | 1b = MII loopback<br>0b = No MII loopback                                   |
| 2     | duplex_mode_env | R     | 1h    | 1b = Full duplex<br>0b = Half duplex                                        |
| 1     | RESERVED        | R     | 0h    | Reserved                                                                    |
| 0     | link_status_bit | R     | 0h    | 1b = link is up<br>0b = link had been down                                  |

# 6.6.2.8 MII\_REG\_11 Register (Offset = 11h) [Reset = 000Bh]

MII\_REG\_11 is shown in Figure 6-27 and described in Table 6-32.

Return to the Summary Table.

Figure 6-27. MII\_REG\_11 Register

|          |          | -    | _    |              |                 |          |          |
|----------|----------|------|------|--------------|-----------------|----------|----------|
| 15       | 14       | 13   | 12   | 11           | 10              | 9        | 8        |
| RESERVED | RESERVED | RESE | RVED | RESERVED     | RESERVED        | RESERVED | RESERVED |
| R-0h     | R-0h     | R-   | 0h   | R-0h         | R-0h            | R-0h     | R-0h     |
| 7        | 6        | 5    | 4    | 3            | 2               | 1        | 0        |
| RESERVED | RESERVED | RESE | RVED | int_polarity | force_interrupt | int_en   | RESERVED |
| R-0h     | R-0h     | R-   | 0h   | R/W-1h       | R/W-0h          | R/W-1h   | R-0h     |

Table 6-32. MII\_REG\_11 Register Field Descriptions

| Bit   | Field           | Туре | Reset | Description                                                 |
|-------|-----------------|------|-------|-------------------------------------------------------------|
| 15    | RESERVED        | R    | 0h    | Reserved                                                    |
| 14    | RESERVED        | R    | 0h    | Reserved                                                    |
| 13-12 | RESERVED        | R    | 0h    | Reserved                                                    |
| 11    | RESERVED        | R    | 0h    | Reserved                                                    |
| 10    | RESERVED        | R    | 0h    | Reserved                                                    |
| 9     | RESERVED        | R    | 0h    | Reserved                                                    |
| 8     | RESERVED        | R    | 0h    | Reserved                                                    |
| 7     | RESERVED        | R    | 0h    | Reserved                                                    |
| 6     | RESERVED        | R    | 0h    | Reserved                                                    |
| 5-4   | RESERVED        | R    | 0h    | Reserved                                                    |
| 3     | int_polarity    | R/W  | 1h    | 1b = Active low<br>0b = Active high                         |
| 2     | force_interrupt | R/W  | 0h    | 1b = Force interrupt pin<br>0b = Do not force interrupt pin |
| 1     | int_en          | R/W  | 1h    | 1b = Enable interrupts 0b = Disable interrupts              |
| 0     | RESERVED        | R    | 0h    | Reserved                                                    |

Submit Document Feedback

# 6.6.2.9 MII\_REG\_12 Register (Offset = 12h) [Reset = 0000h]

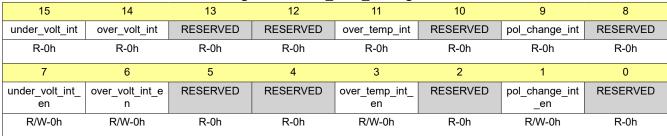
MII\_REG\_12 is shown in Figure 6-28 and described in Table 6-33.

Return to the Summary Table.

### Figure 6-28. MII\_REG\_12 Register

| 15       | 14                    | 13          | 12       | 11         | 10                       | 9        | 8        |
|----------|-----------------------|-------------|----------|------------|--------------------------|----------|----------|
| RESERVED | energy_det_int        | link_int    | RESERVED | esd_int    | ms_train_done_<br>int    | RESERVED | RESERVED |
| R-0h     | R-0h                  | R-0h        | R-0h     | R-0h       | R-0h                     | R-0h     | R-0h     |
| 7        | 6                     | 5           | 4        | 3          | 2                        | 1        | 0        |
| RESERVED | energy_det_int_<br>en | link_int_en | RESERVED | esd_int_en | ms_train_done_<br>int_en | RESERVED | RESERVED |
| R-0h     | R/W-0h                | R/W-0h      | R-0h     | R/W-0h     | R/W-0h                   | R-0h     | R-0h     |

### Table 6-33. MII REG 12 Register Field Descriptions


| Bit | Field                | Туре | Reset | Description                         |  |
|-----|----------------------|------|-------|-------------------------------------|--|
| 15  | RESERVED             | R    | 0h    | Reserved                            |  |
| 14  | energy_det_int       | R    | 0h    | Energy det change interrupt status  |  |
| 13  | link_int             | R    | 0h    | Link status change interrupt status |  |
| 12  | RESERVED             | R    | 0h    | Reserved                            |  |
| 11  | esd_int              | R    | 0h    | ESD fault detected interrupt status |  |
| 10  | ms_train_done_int    | R    | 0h    | Training done interrupt status      |  |
| 9   | RESERVED             | R    | 0h    | Reserved                            |  |
| 8   | RESERVED             | R    | 0h    | Reserved                            |  |
| 7   | RESERVED             | R    | 0h    | Reserved                            |  |
| 6   | energy_det_int_en    | R/W  | 0h    | Energy det change interrupt enable  |  |
| 5   | link_int_en          | R/W  | 0h    | Link status change interrupt enable |  |
| 4   | RESERVED             | R    | 0h    | Reserved                            |  |
| 3   | esd_int_en           | R/W  | 0h    | ESD fault detected interrupt enable |  |
| 2   | ms_train_done_int_en | R/W  | 0h    | Training done interrupt enable      |  |
| 1   | RESERVED             | R    | 0h    | Reserved                            |  |
| 0   | RESERVED             | R    | 0h    | Reserved                            |  |

## 6.6.2.10 MII\_REG\_13 Register (Offset = 13h) [Reset = 0000h]

MII\_REG\_13 is shown in Figure 6-29 and described in Table 6-34.

Return to the Summary Table.

# Figure 6-29. MII\_REG\_13 Register



### Table 6-34. MII\_REG\_13 Register Field Descriptions

| Bit | Field             | Туре | Reset | Description                           |  |
|-----|-------------------|------|-------|---------------------------------------|--|
| 15  | under_volt_int    | R    | 0h    | Under volt interrupt status           |  |
| 14  | over_volt_int     | R    | 0h    | Over volt interrupt status            |  |
| 13  | RESERVED          | R    | 0h    | Reserved                              |  |
| 12  | RESERVED          | R    | 0h    | Reserved                              |  |
| 11  | over_temp_int     | R    | 0h    | Over temp interrupt status            |  |
| 10  | RESERVED          | R    | 0h    | Reserved                              |  |
| 9   | pol_change_int    | R    | 0h    | Data polarity change interrupt status |  |
| 8   | RESERVED          | R    | 0h    | Reserved                              |  |
| 7   | under_volt_int_en | R/W  | 0h    | Under volt interrupt enable           |  |
| 6   | over_volt_int_en  | R/W  | 0h    | Over volt interrupt enable            |  |
| 5   | RESERVED          | R    | 0h    | Reserved                              |  |
| 4   | RESERVED          | R    | 0h    | Reserved                              |  |
| 3   | over_temp_int_en  | R/W  | 0h    | Over temp interrupt enable            |  |
| 2   | RESERVED          | R    | 0h    | Reserved                              |  |
| 1   | pol_change_int_en | R/W  | 0h    | Data Polarity change interrupt enable |  |
| 0   | RESERVED          | R    | 0h    | Reserved                              |  |

Submit Document Feedback



# 6.6.2.11 MII\_REG\_16 Register (Offset = 16h) [Reset = 0000h]

MII\_REG\_16 is shown in Figure 6-30 and described in Table 6-35.

Return to the Summary Table.

Figure 6-30. MII\_REG\_16 Register

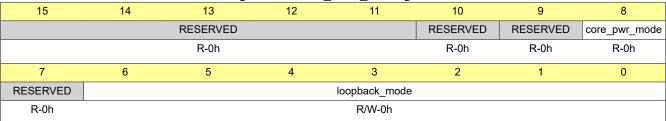



Table 6-35. MII\_REG\_16 Register Field Descriptions

| Bit   | Field         | Туре | Reset | Description                                                                                                          |  |  |  |
|-------|---------------|------|-------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| 15-11 | RESERVED      | R    | 0h    | Reserved                                                                                                             |  |  |  |
| 10    | RESERVED      | R    | 0h    | Reserved                                                                                                             |  |  |  |
| 9     | RESERVED      | R    | 0h    | Reserved                                                                                                             |  |  |  |
| 8     | core_pwr_mode | R    | 0h    | 1b = Core is is normal power mode<br>0b = Core is in power down or sleep mode                                        |  |  |  |
| 7     | RESERVED      | R    | 0h    | Reserved                                                                                                             |  |  |  |
| 6-0   | loopback_mode | R/W  | 0h    | 000001b = PCS loop<br>000010b = RS loop<br>000100b = Digital loop<br>001000B = Analog loop<br>010000b = Reverse loop |  |  |  |



# 6.6.2.12 MII\_REG\_18 Register (Offset = 18h) [Reset = 0008h]

MII\_REG\_18 is shown in Figure 6-31 and described in Table 6-36.

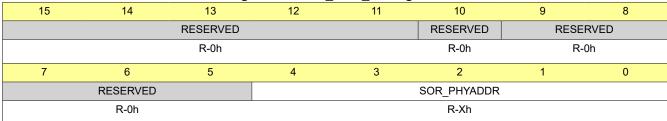
Return to the Summary Table.

### Figure 6-31. MII\_REG\_18 Register

| 15                   | 14                      | 13       | 12       | 11                  | 10       | 9        | 8        |
|----------------------|-------------------------|----------|----------|---------------------|----------|----------|----------|
| ack_received_in t    | tx_valid_clr_int        | RESERVED | RESERVED | por_done_int        | RESERVED | RESERVED | RESERVED |
| R-0h                 | R-0h                    | R-0h     | R-0h     | R-0h                | R-0h     | R-0h     | R-0h     |
| 7                    | 6                       | 5        | 4        | 3                   | 2        | 1        | 0        |
| ack_received_in t_en | tx_valid_clr_int_<br>en | RESERVED | RESERVED | por_done_int_e<br>n | RESERVED | RESERVED | RESERVED |
| R/W-0h               | R/W-0h                  | R-0h     | R-0h     | R/W-1h              | R-0h     | R-0h     | R-0h     |

### Table 6-36. MII REG 18 Register Field Descriptions

| Bit | Field               | Type | Reset | Description                              |  |
|-----|---------------------|------|-------|------------------------------------------|--|
| 15  | ack_received_int    | R    | 0h    | Ack received interrupt status (OAM)      |  |
| 14  | tx_valid_clr_int    | R    | 0h    | mr_tx_valid clear interrupt status (OAM) |  |
| 13  | RESERVED            | R    | 0h    | Reserved                                 |  |
| 12  | RESERVED            | R    | 0h    | Reserved                                 |  |
| 11  | por_done_int        | R    | 0h    | POR done interrupt status                |  |
| 10  | RESERVED            | R    | 0h    | Reserved                                 |  |
| 9   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 8   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 7   | ack_received_int_en | R/W  | 0h    | Ack received interrupt enable (OAM)      |  |
| 6   | tx_valid_clr_int_en | R/W  | 0h    | mr_tx_valid clear interrupt enable (OAM) |  |
| 5   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 4   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 3   | por_done_int_en     | R/W  | 1h    | POR done interrupt enable                |  |
| 2   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 1   | RESERVED            | R    | 0h    | Reserved                                 |  |
| 0   | RESERVED            | R    | 0h    | Reserved                                 |  |


Submit Document Feedback

# 6.6.2.13 MII\_REG\_19 Register (Offset = 19h) [Reset = 00XXh]

MII\_REG\_19 is shown in Figure 6-32 and described in Table 6-37.

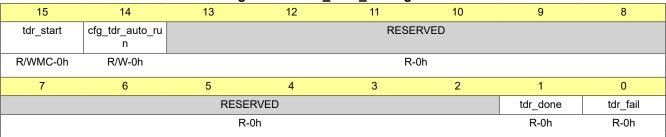
Return to the Summary Table.

## Figure 6-32. MII\_REG\_19 Register



#### Table 6-37. MII\_REG\_19 Register Field Descriptions

| Bit   | Field       | Туре | Reset | Description                    |
|-------|-------------|------|-------|--------------------------------|
| 15-11 | RESERVED    | R    | 0h    | Reserved                       |
| 10    | RESERVED    | R    | 0h    | Reserved                       |
| 9-5   | RESERVED    | R    | 0h    | Reserved                       |
| 4-0   | SOR_PHYADDR | R    | Х     | PHY ADDRESS latched from strap |




## 6.6.2.14 MII\_REG\_1E Register (Offset = 1Eh) [Reset = 0000h]

MII\_REG\_1E is shown in Figure 6-33 and described in Table 6-38.

Return to the Summary Table.

## Figure 6-33. MII\_REG\_1E Register



#### Table 6-38. MII\_REG\_1E Register Field Descriptions

| Bit  | Field            | Туре  | Reset | Description                                                                                                          |
|------|------------------|-------|-------|----------------------------------------------------------------------------------------------------------------------|
| 15   | tdr_start        | R/WMC | 0h    | 1b = TDR start Bit is cleared after TDR run is complete                                                              |
| 14   | cfg_tdr_auto_run | R/W   | 0h    | 1b = TDR start automatically on link down<br>0b = TDR start manually using 0x1E[15]                                  |
| 13-2 | RESERVED         | R     | 0h    | Reserved                                                                                                             |
| 1    | tdr_done         | R     | Oh    | TDR done status 1b = TDR done 0b = TDR on-going or not initiated                                                     |
| 0    | tdr_fail         | R     | 0h    | When tdr_done status is 1, this bit inidicates if TDR ran successfully 1b = TDR run failed 0b = TDR ran successfully |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



## 6.6.2.15 MII\_REG\_1F Register (Offset = 1Fh) [Reset = 0000h]

MII\_REG\_1F is shown in Figure 6-34 and described in Table 6-39.

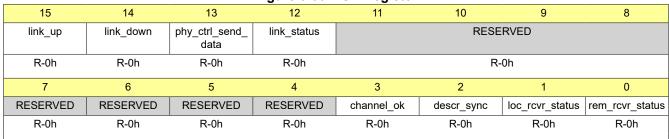
Return to the Summary Table.

## Figure 6-34. MII\_REG\_1F Register

| 15              | 14            | 13       | 12       | 11 | 10       | 9 | 8 |  |
|-----------------|---------------|----------|----------|----|----------|---|---|--|
| sw_global_reset | digital_reset | RESERVED |          |    | RESERVED |   |   |  |
| R/WMC-0h        | R/WMC-0h      | R-0h     |          |    | R-0h     |   |   |  |
| 7               | 6             | 5        | 4        | 3  | 2        | 1 | 0 |  |
| RESERVED        | RESERVED      | RESERVED | RESERVED |    |          |   |   |  |
| R-0h            | R-0h          | R-0h     |          |    | R-0h     |   |   |  |

#### Table 6-39. MII\_REG\_1F Register Field Descriptions

| Bit  | Field           | Туре  | Reset | Description                                                              |
|------|-----------------|-------|-------|--------------------------------------------------------------------------|
| 15   | sw_global_reset | R/WMC | 0h    | Hardware reset - Reset digital + register file This bit is self clearing |
| 14   | digital_reset   | R/WMC | 0h    | Soft reset - Reset only digital core This bit is self clearing           |
| 13   | RESERVED        | R     | 0h    | Reserved                                                                 |
| 12-8 | RESERVED        | R     | 0h    | Reserved                                                                 |
| 7    | RESERVED        | R     | 0h    | Reserved                                                                 |
| 6    | RESERVED        | R     | 0h    | Reserved                                                                 |
| 5    | RESERVED        | R     | 0h    | Reserved                                                                 |
| 4-0  | RESERVED        | R     | 0h    | Reserved                                                                 |




#### 6.6.2.16 LSR Register (Offset = 180h) [Reset = 0000h]

LSR is shown in Figure 6-35 and described in Table 6-40.

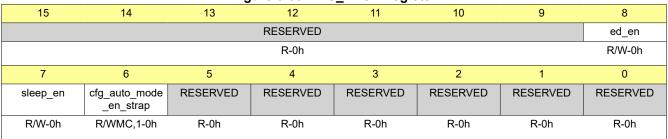
Return to the Summary Table.

# Figure 6-35. LSR Register



#### **Table 6-40. LSR Register Field Descriptions**

| Bit  | Field              | Type | Reset | Description                     |
|------|--------------------|------|-------|---------------------------------|
| 15   | link_up            | R    | 0h    | Link up as defined by CnS       |
| 14   | link_down          | R    | 0h    | Link down as defined by CnS     |
| 13   | phy_ctrl_send_data | R    | 0h    | Phy control in send data status |
| 12   | link_status        | R    | 0h    | IEEE defined Live Link status   |
| 11-8 | RESERVED           | R    | 0h    | Reserved                        |
| 7    | RESERVED           | R    | 0h    | Reserved                        |
| 6    | RESERVED           | R    | 0h    | Reserved                        |
| 5    | RESERVED           | R    | 0h    | Reserved                        |
| 4    | RESERVED           | R    | 0h    | Reserved                        |
| 3    | channel_ok         | R    | 0h    | channel okay status             |
| 2    | descr_sync         | R    | 0h    | Descrambler lock status         |
| 1    | loc_rcvr_status    | R    | 0h    | Local receiver status           |
| 0    | rem_rcvr_status    | R    | 0h    | Remote receiver status          |


Submit Document Feedback

## 6.6.2.17 LPS\_CFG2 Register (Offset = 18Bh) [Reset = 0000h]

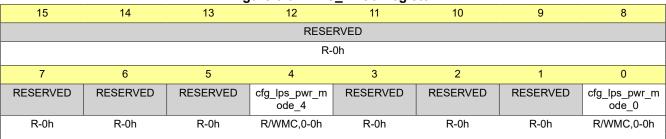
LPS\_CFG2 is shown in Figure 6-36 and described in Table 6-41.

Return to the Summary Table.

# Figure 6-36. LPS\_CFG2 Register



#### Table 6-41. LPS\_CFG2 Register Field Descriptions


| Bit  | Field                  | Туре    | Reset | Description                                                                                                 |
|------|------------------------|---------|-------|-------------------------------------------------------------------------------------------------------------|
| 15-9 | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 8    | ed_en                  | R/W     | 0h    | 1b = Enable energy detection on MDI<br>0b = Disable energy detection on MDI                                 |
| 7    | sleep_en               | R/W     | 0h    | 1b = Allow PHY to enter sleep<br>0b = Do not allow PHY to enter sleep                                       |
| 6    | cfg_auto_mode_en_strap | R/WMC,1 | 0h    | LPS autonomous mode enable 1b = PHY enters normal mode on power up 0b = PHY enters standby mode on power up |
| 5    | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 4    | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 3    | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 2    | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 1    | RESERVED               | R       | 0h    | Reserved                                                                                                    |
| 0    | RESERVED               | R       | 0h    | Reserved                                                                                                    |

# 6.6.2.18 LPS\_CFG3 Register (Offset = 18Ch) [Reset = 0000h]

LPS\_CFG3 is shown in Figure 6-37 and described in Table 6-42.

Return to the Summary Table.

## Figure 6-37. LPS\_CFG3 Register

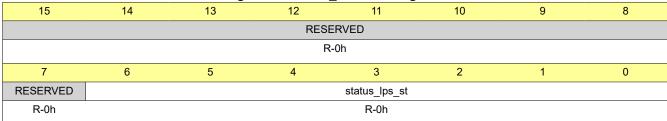


#### Table 6-42. LPS\_CFG3 Register Field Descriptions

| Bit  | Field              | Туре    | Reset | Description               |
|------|--------------------|---------|-------|---------------------------|
| 15-8 | RESERVED           | R       | 0h    | Reserved                  |
| 7    | RESERVED           | R       | 0h    | Reserved                  |
| 6    | RESERVED           | R       | 0h    | Reserved                  |
| 5    | RESERVED           | R       | 0h    | Reserved                  |
| 4    | cfg_lps_pwr_mode_4 | R/WMC,0 | 0h    | Set to enter standby mode |
| 3    | RESERVED           | R       | 0h    | Reserved                  |
| 2    | RESERVED           | R       | 0h    | Reserved                  |
| 1    | RESERVED           | R       | 0h    | Reserved                  |
| 0    | cfg_lps_pwr_mode_0 | R/WMC,0 | 0h    | Set to enter normal mode  |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated




## 6.6.2.19 LPS\_STATUS Register (Offset = 18Eh) [Reset = 0000h]

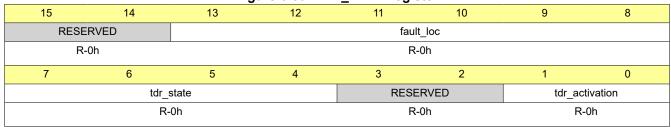
LPS\_STATUS is shown in Figure 6-38 and described in Table 6-43.

Return to the Summary Table.

## Figure 6-38. LPS\_STATUS Register



## Table 6-43. LPS\_STATUS Register Field Descriptions


| Bit  | Field         | Туре | Reset | Description                                              |
|------|---------------|------|-------|----------------------------------------------------------|
| 15-7 | RESERVED      | R    | 0h    | Reserved                                                 |
| 6-0  | status_lps_st | R    |       | Observe LPS state : 0x2 = Standby mode 0x4 = Normal mode |

## 6.6.2.20 TDR\_TC12 Register (Offset = 30Fh) [Reset = 0000h]

TDR\_TC12 is shown in Figure 6-39 and described in Table 6-44.

Return to the Summary Table.

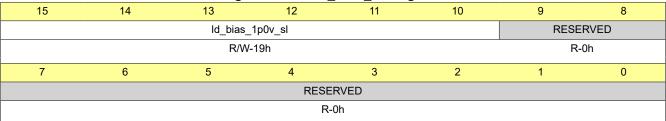
# Figure 6-39. TDR\_TC12 Register



## Table 6-44. TDR\_TC12 Register Field Descriptions

| Bit   | Field          | Туре | Reset | Description |
|-------|----------------|------|-------|-------------|
| 15-14 | RESERVED       | R    | 0h    | Reserved    |
| 13-8  | fault_loc      | R    | 0h    | See TC12    |
| 7-4   | tdr_state      | R    | 0h    | See TC12    |
| 3-2   | RESERVED       | R    | 0h    | Reserved    |
| 1-0   | tdr_activation | R    | 0h    | See TC12    |

Submit Document Feedback


Copyright © 2025 Texas Instruments Incorporated

## 6.6.2.21 A2D\_REG\_05 Register (Offset = 405h) [Reset = 6400h]

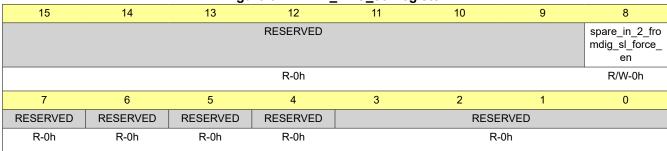
A2D\_REG\_05 is shown in Figure 6-40 and described in Table 6-45.

Return to the Summary Table.

#### Figure 6-40. A2D\_REG\_05 Register



## Table 6-45. A2D\_REG\_05 Register Field Descriptions


|      | Table 0-43. AZD_NEG_03 Negister Field Descriptions |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|------|----------------------------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bit  | Field                                              | Type | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 15-1 | 0 Id_bias_1p0v_sl                                  | R/W  | 19h   | Bits to control the DAC current of LD and hence the swing. 001010b = 400mV 001011b = 440mV 001100b = 480mV 001101b = 520mV 001110b = 560mV 001111b = 600mV 010000b = 640mV 010001b = 680mV 010010b = 720mV 010010b = 720mV 0101010b = 800mV 010101b = 840mV 010101b = 840mV 010110b = 80mV 010110b = 1000mV 011010b = 960mV 011000b = 960mV 011001b = 1000mV 011010b = 1040mV 011010b = 1120mV 011101b = 1160mV 011110b = 1200mV |  |  |  |  |  |
| 9-0  | RESERVED                                           | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

# 6.6.2.22 A2D\_REG\_30 Register (Offset = 41Eh) [Reset = 0000h]

A2D\_REG\_30 is shown in Figure 6-41 and described in Table 6-46.

Return to the Summary Table.

## Figure 6-41. A2D\_REG\_30 Register



## Table 6-46. A2D\_REG\_30 Register Field Descriptions

| Bit  | Field                           | Туре | Reset | Description                        |
|------|---------------------------------|------|-------|------------------------------------|
| 15-9 | RESERVED                        | R    | 0h    | Reserved                           |
| 8    | spare_in_2_fromdig_sl_for ce_en | R/W  | 0h    | Force control enable for Reg0x042F |
| 7    | RESERVED                        | R    | 0h    | Reserved                           |
| 6    | RESERVED                        | R    | 0h    | Reserved                           |
| 5    | RESERVED                        | R    | 0h    | Reserved                           |
| 4    | RESERVED                        | R    | 0h    | Reserved                           |
| 3-0  | RESERVED                        | R    | 0h    | Reserved                           |

Submit Document Feedback

# 6.6.2.23 A2D\_REG\_40 Register (Offset = 428h) [Reset = 6002h]

A2D\_REG\_40 is shown in Figure 6-42 and described in Table 6-47.

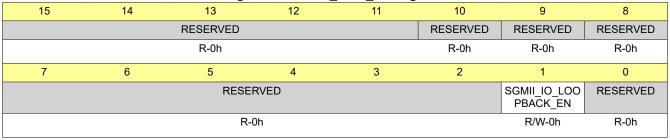
Return to the Summary Table.

#### Figure 6-42. A2D\_REG\_40 Register

| 15       | 14             | 13     | 12       | 11                              | 10       | 9    | 8        |
|----------|----------------|--------|----------|---------------------------------|----------|------|----------|
| RESERVED | SGMII_TESTMODE |        | RESERVED | SGMII_SOP_S<br>ON_SLEW_CT<br>RL | RESERVED | RESE | RVED     |
| R-0h     | R/M            | R/W-3h |          | R/W-0h                          | R-0h     | R-0h |          |
| 7        | 6              | 5      | 4        | 3                               | 2        | 1    | 0        |
| RESERVED | RESERVED       |        |          |                                 |          |      | RESERVED |
| R-0h     |                |        | R        | -0h                             |          |      | R-0h     |
|          |                |        |          |                                 |          |      |          |

#### Table 6-47. A2D REG 40 Register Field Descriptions

|       | Table 0 41: ALD_INEG_40 Register Field Descriptions |      |       |                                                                                                                                        |  |  |  |  |  |
|-------|-----------------------------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bit   | Field                                               | Туре | Reset | Description                                                                                                                            |  |  |  |  |  |
| 15    | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 14-13 | SGMII_TESTMODE                                      | R/W  | 3h    | 00b = 1000mV Sgmii output swing<br>01b = 1260mV Sgmii output swing<br>10b = 900mV Sgmii output swing<br>11b = 720mV Sgmii output swing |  |  |  |  |  |
| 12    | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 11    | SGMII_SOP_SON_SLEW<br>_CTRL                         | R/W  | 0h    | 0b =Default output rise/fall time<br>1b = Slow output rise/fall time                                                                   |  |  |  |  |  |
| 10    | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 9-8   | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 7     | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 6-1   | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
| 0     | RESERVED                                            | R    | 0h    | Reserved                                                                                                                               |  |  |  |  |  |
|       |                                                     |      |       |                                                                                                                                        |  |  |  |  |  |




#### 6.6.2.24 A2D\_REG\_41 Register (Offset = 429h) [Reset = 0030h]

A2D\_REG\_41 is shown in Figure 6-43 and described in Table 6-48.

Return to the Summary Table.

## Figure 6-43. A2D\_REG\_41 Register



#### Table 6-48. A2D\_REG\_41 Register Field Descriptions

| Bit   | Field                    | Туре | Reset | Description                                                                                                 |
|-------|--------------------------|------|-------|-------------------------------------------------------------------------------------------------------------|
| 15-11 | RESERVED                 | R    | 0h    | Reserved                                                                                                    |
| 10    | RESERVED                 | R    | 0h    | Reserved                                                                                                    |
| 9     | RESERVED                 | R    | 0h    | Reserved                                                                                                    |
| 8     | RESERVED                 | R    | 0h    | Reserved                                                                                                    |
| 7-2   | RESERVED                 | R    | 0h    | Reserved                                                                                                    |
| 1     | SGMII_IO_LOOPBACK_E<br>N | R/W  | 0h    | 1b = Connects RX and TX signals internally to provide internal loopback option without external components. |
| 0     | RESERVED                 | R    | 0h    | Reserved                                                                                                    |

Submit Document Feedback

## 6.6.2.25 A2D\_REG\_44 Register (Offset = 42Ch) [Reset = 0000h]

A2D\_REG\_44 is shown in Figure 6-44 and described in Table 6-49.

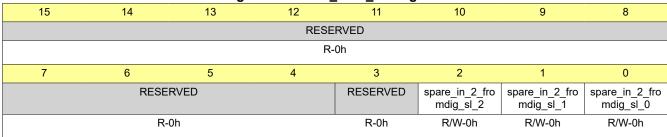
Return to the Summary Table.

#### Figure 6-44. A2D\_REG\_44 Register

|          |          | -        | _                         | 0        |          |          |          |
|----------|----------|----------|---------------------------|----------|----------|----------|----------|
| 15       | 14       | 13       | 12                        | 11       | 10       | 9        | 8        |
| RESERVED | RESERVED | RESERVED | RESERVED                  | RESERVED | RESERVED | RESERVED | RESERVED |
| R-0h     | R-0h     | R-0h     | R-0h                      | R-0h     | R-0h     | R-0h     | R-0h     |
| 7        | 6        | 5        | 4                         | 3        | 2        | 1        | 0        |
| RESERVED | RESERVED | RESERVED | SGMII_DIG_LO<br>OPBACK_EN |          | RESERVED |          | RESERVED |
| R-0h     | R-0h     | R-0h     | R/W-0h                    |          | R-0h     |          | R-0h     |

## Table 6-49. A2D\_REG\_44 Register Field Descriptions

| Bit | Field                     | Туре | Reset | Description                                 |
|-----|---------------------------|------|-------|---------------------------------------------|
| 15  | RESERVED                  | R    | 0h    | Reserved                                    |
| 14  | RESERVED                  | R    | 0h    | Reserved                                    |
| 13  | RESERVED                  | R    | 0h    | Reserved                                    |
| 12  | RESERVED                  | R    | 0h    | Reserved                                    |
| 11  | RESERVED                  | R    | 0h    | Reserved                                    |
| 10  | RESERVED                  | R    | 0h    | Reserved                                    |
| 9   | RESERVED                  | R    | 0h    | Reserved                                    |
| 8   | RESERVED                  | R    | 0h    | Reserved                                    |
| 7   | RESERVED                  | R    | 0h    | Reserved                                    |
| 6   | RESERVED                  | R    | 0h    | Reserved                                    |
| 5   | RESERVED                  | R    | 0h    | Reserved                                    |
| 4   | SGMII_DIG_LOOPBACK_<br>EN | R/W  | 0h    | 1b = Loops back TX data to RX before the IO |
| 3-1 | RESERVED                  | R    | 0h    | Reserved                                    |
| 0   | RESERVED                  | R    | 0h    | Reserved                                    |




#### 6.6.2.26 A2D\_REG\_47 Register (Offset = 42Fh) [Reset = 0000h]

A2D\_REG\_47 is shown in Figure 6-45 and described in Table 6-50.

Return to the Summary Table.

## Figure 6-45. A2D\_REG\_47 Register



## Table 6-50. A2D\_REG\_47 Register Field Descriptions

| Bit  | Field                   | Туре | Reset | Description                                                                               |
|------|-------------------------|------|-------|-------------------------------------------------------------------------------------------|
| 15-4 | RESERVED                | R    | 0h    | Reserved                                                                                  |
| 3    | RESERVED                | R    | 0h    | Reserved                                                                                  |
| 2    | spare_in_2_fromdig_sl_2 | R/W  | 0h    | energy lost indication force control value                                                |
| 1    | spare_in_2_fromdig_sl_1 | R/W  | 0h    | energy lost detector enable force control value                                           |
| 0    | spare_in_2_fromdig_sl_0 | R/W  | 0h    | [0] - sleep enable force control value Force control enable is controlled by reg0x041E[8] |

Submit Document Feedback



## 6.6.2.27 A2D\_REG\_48 Register (Offset = 430h) [Reset = 0960h]

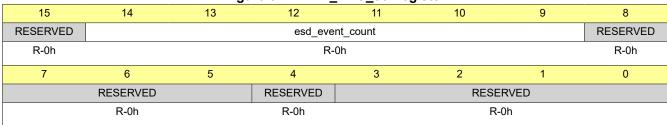
A2D\_REG\_48 is shown in Figure 6-46 and described in Table 6-51.

Return to the Summary Table.

#### Figure 6-46. A2D\_REG\_48 Register

|          |                      |          | _        |                      |          |   |   |  |
|----------|----------------------|----------|----------|----------------------|----------|---|---|--|
| 15       | 14                   | 13       | 12       | 11                   | 10       | 9 | 8 |  |
| RESERVED | RESERVED             | RESERVED | RESERVED | DLL_TX_DELAY_CTRL_SL |          |   |   |  |
| R-0h     | R-0h                 | R-0h     | R-0h     |                      | R/W-9h   |   |   |  |
| 7        | 6                    | 5        | 4        | 3                    | 2        | 1 | 0 |  |
|          | DLL_RX_DELAY_CTRL_SL |          |          |                      | RESERVED |   |   |  |
|          | R/W                  | V-6h     |          | R-0h                 |          |   |   |  |

## Table 6-51. A2D\_REG\_48 Register Field Descriptions


| Bit  | Field                    | Туре | Reset | Description                                                      |
|------|--------------------------|------|-------|------------------------------------------------------------------|
| 15   | RESERVED                 | R    | 0h    | Reserved                                                         |
| 14   | RESERVED                 | R    | 0h    | Reserved                                                         |
| 13   | RESERVED                 | R    | 0h    | Reserved                                                         |
| 12   | RESERVED                 | R    | 0h    | Reserved                                                         |
| 11-8 | DLL_TX_DELAY_CTRL_S      | R/W  | 9h    | Refer to electrical specification for delay vs code information. |
| 7-4  | DLL_RX_DELAY_CTRL_<br>SL | R/W  | 6h    | Refer to electrical specification for delay vs code information. |
| 3-0  | RESERVED                 | R    | 0h    | Reserved                                                         |

#### 6.6.2.28 A2D\_REG\_66 Register (Offset = 442h) [Reset = 0000h]

A2D\_REG\_66 is shown in Figure 6-47 and described in Table 6-52.

Return to the Summary Table.

# Figure 6-47. A2D\_REG\_66 Register



## Table 6-52. A2D\_REG\_66 Register Field Descriptions

| Bit  | Field           | Туре | Reset | Description                                                 |  |  |  |
|------|-----------------|------|-------|-------------------------------------------------------------|--|--|--|
| 15   | RESERVED        | R    | 0h    | Reserved                                                    |  |  |  |
| 14-9 | esd_event_count | R    | 0h    | Number gives the number of esd events on the copper channel |  |  |  |
| 8    | RESERVED        | R    | 0h    | Reserved                                                    |  |  |  |
| 7-5  | RESERVED        | R    | 0h    | Reserved                                                    |  |  |  |
| 4    | RESERVED        | R    | 0h    | Reserved                                                    |  |  |  |
| 3-0  | RESERVED        | R    | 0h    | Reserved                                                    |  |  |  |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

# 6.6.2.29 LEDS\_CFG\_1 Register (Offset = 450h) [Reset = 2610h]

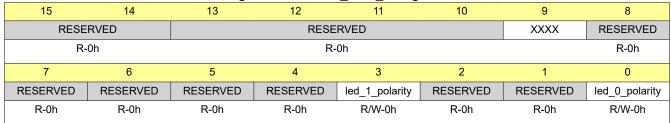
LEDS\_CFG\_1 is shown in Figure 6-48 and described in Table 6-53.

Return to the Summary Table.

#### Figure 6-48. LEDS\_CFG\_1 Register

|              |                            | -      |           |              | 9  |   |   |  |
|--------------|----------------------------|--------|-----------|--------------|----|---|---|--|
| 15           | 14                         | 13     | 12        | 11           | 10 | 9 | 8 |  |
| RESERVED     | leds_bypass_str<br>etching | leds_b | link_rate | led_2_option |    |   |   |  |
| R-0h         | R/W-0h                     | RΛ     | V-2h      | R/W-6h       |    |   |   |  |
| 7            | 6                          | 5      | 4         | 3            | 2  | 1 | 0 |  |
| led_1_option |                            |        |           | led_0_option |    |   |   |  |
| R/W-1h       |                            |        |           | R/W-0h       |    |   |   |  |

#### Table 6-53. LEDS\_CFG\_1 Register Field Descriptions


| Bit   | Field                  | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | RESERVED               | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14    | leds_bypass_stretching | R/W  | 0h    | Bypass LED Signal Stretch                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13-12 | leds_blink_rate        | R/W  | 2h    | Blink Rate for the LED -<br>00b = 20Hz (50mSec)<br>01b = 10Hz (100mSec)<br>10b = 5Hz (200mSec)<br>11b = 2Hz (500mSec)                                                                                                                                                                                                                                                                                                                                                                         |
| 11-8  | led_2_option           | R/W  | 6h    | 0000b = link OK 0001b = link OK + blink on TX/RX activity 0010b = link OK + blink on TX activity 0011b = link OK + blink on RX activity 0010b = link OK + blink on RX activity 0100b = link OK + 100Base-T1 Master 0101b = link OK + 100Base-T1 Slave 0110b = TX/RX activity with stretch option 0111b = Reserved 1000b = Reserved 1001b = Link lost (remains on until register 0x1 is read) 1010b = PRBS error latch until cleared by 0x620(1) 1011b = XMII TX/RX Error with stretch option  |
| 7-4   | led_1_option           | R/W  | 1h    | 0000b = link OK 0001b = link OK + blink on TX/RX activity 0010b = link OK + blink on TX activity 0011b = link OK + blink on RX activity 0010b = link OK + blink on RX activity 0100b = link OK + 100Base-T1 Master 0101b = link OK + 100Base-T1 Slave 0110b = TX/RX activity with stretch option 0111b = Reserved 1000b = Reserved 1001b = Link lost (remains on until register 0x1 is read) 1010b = PRBS error (latch until cleared by 0x620(1) 1011b = XMII TX/RX Error with stretch option |
| 3-0   | led_0_option           | R/W  | Oh    | 0000b = link OK 0001b = link OK + blink on TX/RX activity 0010b = link OK + blink on TX activity 0011b = link OK + blink on RX activity 0011b = link OK + blink on RX activity 0100b = link OK + 100Base-T1 Master 0101b = link OK + 100Base-T1 Slave 0110b = TX/RX activity with stretch option 0111b = Reserved 1000b = Reserved 1001b = Link lost (remains on until register 0x1 is read) 1010b = PRBS error (latch until cleared by 0x620(1) 1011b = XMII TX/RX Error with stretch option |

## 6.6.2.30 LEDS\_CFG\_2 Register (Offset = 451h) [Reset = 0000h]

LEDS\_CFG\_2 is shown in Figure 6-49 and described in Table 6-54.

Return to the Summary Table.

## Figure 6-49. LEDS\_CFG\_2 Register



#### Table 6-54. LEDS\_CFG\_2 Register Field Descriptions

| Bit   | Field              | Туре | Reset | Description                                                                                                                                                                                                                               |
|-------|--------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-14 | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 13-10 | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 11-9  | cfg_ieee_compl_sel | R/W  | Oh    | Observe IEEE Compliance signals in LED_0_GPIO_0, when LED_0_GPIO_CTRL= 'h5 as follows - 000b = loc_rcvr_status 001b = rem_rcvr_status 010b = loc_snr_margin 011b = rem_phy_ready 100b = pma_watchdog_status 101b = link_sync_link_control |
| 8     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 7     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 6     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 5     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 4     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 3     | led_1_polarity     | R/W  | 0h    | LED_1 polarity                                                                                                                                                                                                                            |
| 2     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 1     | RESERVED           | R    | 0h    | Reserved                                                                                                                                                                                                                                  |
| 0     | led_0_polarity     | R/W  | 0h    | LED_0 polarity                                                                                                                                                                                                                            |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

# 6.6.2.31 IO\_MUX\_CFG\_1 Register (Offset = 452h) [Reset = 0000h]

IO\_MUX\_CFG\_1 is shown in Figure 6-50 and described in Table 6-55.

Return to the Summary Table.

#### Figure 6-50. IO\_MUX\_CFG\_1 Register

|          | -  | _        |    | 0               |   |   |  |
|----------|----|----------|----|-----------------|---|---|--|
| 15 14    | 13 | 12       | 11 | 10              | 9 | 8 |  |
| RESERVED |    | RESERVED |    | led_1_gpio_ctrl |   |   |  |
| R-0h     |    | R-0h     |    | R/W-0h          |   |   |  |
| 7 6      | 5  | 4        | 3  | 2               | 1 | 0 |  |
| RESERVED |    | RESERVED |    | led_0_gpio_ctrl |   |   |  |
| R-0h     |    | R-0h     |    | R/W-0h          |   |   |  |

## Table 6-55. IO\_MUX\_CFG\_1 Register Field Descriptions

| Bit   | Field           | Туре | Reset | Description                                                                                                                                                                                                                                                        |
|-------|-----------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-14 | RESERVED        | R    | 0h    | Reserved                                                                                                                                                                                                                                                           |
| 13-11 | RESERVED        | R    | 0h    | Reserved                                                                                                                                                                                                                                                           |
| 10-8  | led_1_gpio_ctrl | R/W  | Oh    | Controls the output of LED_1 IO - 000b = LED_1 (default: link OK + blink on TX/RX activity) 001b = Reserved 010b = RGMII data match indication 011b = Under-Voltage indication 100b = Interrupt 101b = IEEE compliance signals 110b = constant 0 111b = constant 1 |
| 7-6   | RESERVED        | R    | 0h    | Reserved                                                                                                                                                                                                                                                           |
| 5-3   | RESERVED        | R    | 0h    | Reserved                                                                                                                                                                                                                                                           |
| 2-0   | led_0_gpio_ctrl | R/W  | Oh    | Controls the output of LED_0 IO:  000b = LED_0 (default: LINK)  001b = Reserved  010b = RGMII data match indication  011b = Under-Voltage indication  100b = Interrupt  101b = IEEE compliance signals (see 0x451[11:9])  110b = constant 0  111b = constant 1     |



# 6.6.2.32 IO\_MUX\_CFG\_2 Register (Offset = 453h) [Reset = 0001h]

IO\_MUX\_CFG\_2 is shown in Figure 6-51 and described in Table 6-56.

Return to the Summary Table.

Figure 6-51. IO\_MUX\_CFG\_2 Register

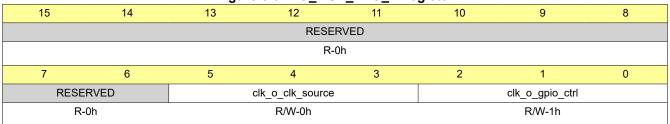
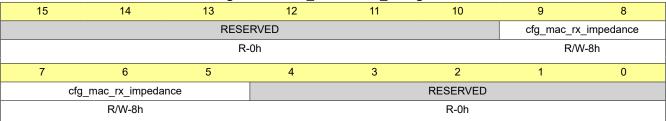



Table 6-56. IO\_MUX\_CFG\_2 Register Field Descriptions

| Bit  | Field            | Туре | Reset | Description                                                                                                                                                                                                                                                                                |
|------|------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-6 | RESERVED         | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                   |
| 5-3  | clk_o_clk_source | R/W  | Oh    | Clock Observable in CLK_O pin - 000b = xi_osc_25m_1p0v_dl (25MHz crystal output - from analog) 001b = Reserved 010b = Reserved 011b = 125MHz clock 100b = 125MHz clock 101b = Reserved 110b = Reserved 111b = Reserved 111b = Reserved                                                     |
| 2-0  | clk_o_gpio_ctrl  | R/W  | 1h    | Controls the output of CLK_O IO - 000b = LED_2 (default: TX/RX activity with stretch option(LED_2_OPTION=0x6) 001b = Clock out (see 0x453[5:3]) 010b = RGMII data match indication 011b = Under-Voltage indication 100b = constant 0 101b = constant 0 110b = constant 0 111b = constant 1 |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated




## 6.6.2.33 IO\_CONTROL\_3 Register (Offset = 456h) [Reset = 0108h]

IO\_CONTROL\_3 is shown in Figure 6-52 and described in Table 6-57.

Return to the Summary Table.

## Figure 6-52. IO\_CONTROL\_3 Register



## Table 6-57. IO\_CONTROL\_3 Register Field Descriptions

| Bit   | Field                | Туре | Reset | Description                                                                                                                                                                                                               |
|-------|----------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-10 | RESERVED             | R    | 0h    | Reserved                                                                                                                                                                                                                  |
| 9-5   | cfg_mac_rx_impedance | R/W  |       | Slew Rate Control for RGMII pads - 01010b = Medium Slew (OA tr/tf compliant, max tr/tf = 1ns) 01011b = Slowest Slew (For low emissions, max tr/tf = 1.2ns) 01000b = Default mode (rgmii tr/tf compliant, max tr/tf=750ps) |
| 4-0   | RESERVED             | R    | 0h    | Reserved                                                                                                                                                                                                                  |



#### 6.6.2.34 SOR\_VECTOR\_1 Register (Offset = 45Dh) [Reset = 0000h]

SOR\_VECTOR\_1 is shown in Figure 6-53 and described in Table 6-58.

Return to the Summary Table.

#### Strap Status Register:

This register has information on modes selected based on straps. Any override of mode using other registers will not be reflected in this register

Figure 6-53. SOR VECTOR 1 Register

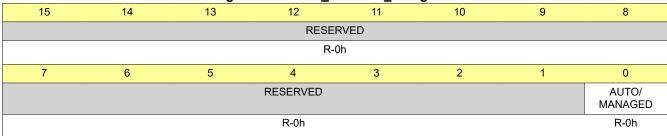
|                    |                    |          | _        | _  | - 5      |   |          |
|--------------------|--------------------|----------|----------|----|----------|---|----------|
| 15                 | 14                 | 13       | 12       | 11 | 10       | 9 | 8        |
| RGMII_TX_SHI<br>FT | RGMII_RX_SHI<br>FT | SGMII_EN | RGMII_EN |    | RESERVED |   | MAC_MODE |
| R-0h               | R-0h               | R-0h     | R-0h     |    | R-0h     |   | R-0h     |
| 7                  | 6                  | 5        | 4        | 3  | 2        | 1 | 0        |
| MAC_               | MODE               | MAS/SLV  |          |    | PHY_AD   |   |          |
| R-                 | -0h                | R-0h     |          |    | R-0h     |   |          |

Table 6-58. SOR VECTOR 1 Register Field Descriptions

| Bit  | Field          | Type | Reset | Description                                                                                                                                                                         |  |
|------|----------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15   | RGMII_TX_SHIFT | R    | 0h    | 0x0 = TX shift disbaled<br>0x1 = TX shift enabled                                                                                                                                   |  |
| 14   | RGMII_RX_SHIFT | R    | Oh    | 0x0 = RX shift disabled<br>0x1 = RX shift enabled                                                                                                                                   |  |
| 13   | SGMII_EN       | R    | 0h    | 0x0 = SGMII disabled<br>0x1 = SGMII enabled                                                                                                                                         |  |
| 12   | RGMII_EN       | R    | 0h    | 0x0 = RGMII disabled<br>0x1 = RGMII enabled                                                                                                                                         |  |
| 11-9 | RESERVED       | R    | 0h    | Reserved                                                                                                                                                                            |  |
| 8-6  | MAC_MODE       | R    | Oh    | 0x0 = SGMII 0x1 = Reserved 0x2 = Reserved 0x3 = Reserved 0x4 = RGMII align 0x5 = RGMII TX shift 0x6 = RGMII TX and RX shift 0x7 = RGMII RX shift                                    |  |
| 5    | MAS/SLV        | R    | 0h    | 0x0 = Slave<br>0x1 = Master                                                                                                                                                         |  |
| 4-0  | PHY_AD         | R    | Oh    | 0x0 = PHY address 0 0x4 = PHY address 4 0x5 = PHY address 5 0x8 = PHY address 8 0xA = PHY address A 0xC = PHY address C 0xD = PHY address D 0xE = PHY address E 0xF = PHY address F |  |

Product Folder Links: DP83TG720S-Q1

# 6.6.2.35 SOR\_VECTOR\_2 Register (Offset = 45Eh) [Reset = 0000h]


SOR\_VECTOR\_2 is shown in Figure 6-54 and described in Table 6-59.

Return to the Summary Table.

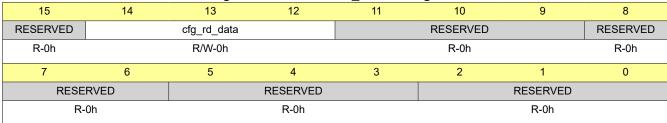
#### Strap Status Register:

This register has information on modes selected based on straps. Any override of mode using other registers will not be reflected in this register

Figure 6-54. SOR\_VECTOR\_2 Register



## Table 6-59. SOR\_VECTOR\_2 Register Field Descriptions


| Bit  | Field        | Туре | Reset | Description                                                 |
|------|--------------|------|-------|-------------------------------------------------------------|
| 15-1 | RESERVED     | R    | 0h    | Reserved                                                    |
| 0    | AUTO/MANAGED | R    | -     | 0x0 = Autonomous mode enabled<br>0x1 = Managed mode enabled |

#### 6.6.2.36 MONITOR\_CTRL2 Register (Offset = 468h) [Reset = 0920h]

MONITOR\_CTRL2 is shown in Figure 6-55 and described in Table 6-60.

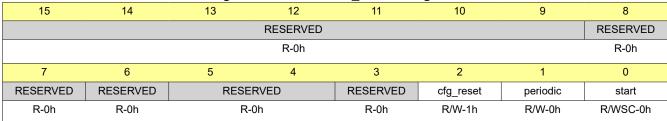
Return to the Summary Table.

## Figure 6-55. MONITOR\_CTRL2 Register



#### Table 6-60. MONITOR\_CTRL2 Register Field Descriptions

| Bit   | Field       |      | Reset  | Description                                                                               |
|-------|-------------|------|--------|-------------------------------------------------------------------------------------------|
| - Dit | i ieiu      | Турс | 110301 | Description                                                                               |
| 15    | RESERVED    | R    | 0h     | Reserved                                                                                  |
| 14-12 | cfg_rd_data | R/W  | 0h     | Sensor select for read-out:  001b = VDDA  010b = VDD1P0  011b = VDDIO  100b = Temperature |
| 11-9  | RESERVED    | R    | 0h     | Reserved                                                                                  |
| 8-6   | RESERVED    | R    | 0h     | Reserved                                                                                  |
| 5-3   | RESERVED    | R    | 0h     | Reserved                                                                                  |
| 2-0   | RESERVED    | R    | 0h     | Reserved                                                                                  |


Submit Document Feedback

# 6.6.2.37 MONITOR\_CTRL4 Register (Offset = 46Ah) [Reset = 0094h]

MONITOR\_CTRL4 is shown in Figure 6-56 and described in Table 6-61.

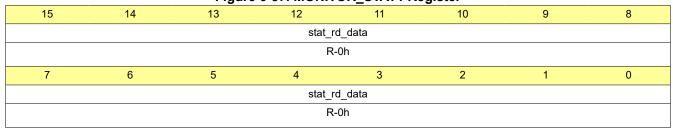
Return to the Summary Table.

## Figure 6-56. MONITOR\_CTRL4 Register



## Table 6-61. MONITOR\_CTRL4 Register Field Descriptions

| Bit  | Field     | Туре  | Reset | Description                                                                                                                                                       |
|------|-----------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-9 | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 8    | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 7    | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 6    | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 5-4  | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 3    | RESERVED  | R     | 0h    | Reserved                                                                                                                                                          |
| 2    | cfg_reset | R/W   | 1h    | 0b = Enable the monitor<br>1b = Monitor is held in reset state<br>At any point of time, if the signal is changed to 1, the module abruptly<br>goes to reset state |
| 1    | periodic  | R/W   | 0h    | 0b = Monitor is enabled only when start is set for one iteration<br>1b = Monitor is enabled for periodic iteration                                                |
| 0    | start     | R/WSC | 0h    | Start indication for sensor monitor FSM, self clearing                                                                                                            |




#### 6.6.2.38 MONITOR\_STAT1 Register (Offset = 47Bh) [Reset = 0000h]

MONITOR\_STAT1 is shown in Figure 6-57 and described in Table 6-62.

Return to the Summary Table.

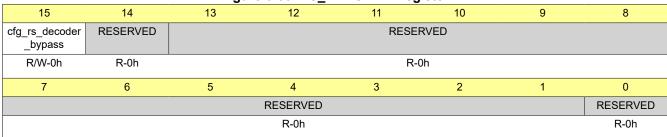
# Figure 6-57. MONITOR\_STAT1 Register



#### Table 6-62. MONITOR\_STAT1 Register Field Descriptions

| Bit  | Field        | Туре | Reset | Description      |
|------|--------------|------|-------|------------------|
| 15-0 | stat_rd_data | R    | 0h    | Read sensor data |

Submit Document Feedback


Copyright © 2025 Texas Instruments Incorporated

# 6.6.2.39 RS\_DECODER Register (Offset = 510h) [Reset = 2D50h]

RS\_DECODER is shown in Figure 6-58 and described in Table 6-63.

Return to the Summary Table.

## Figure 6-58. RS\_DECODER Register



#### Table 6-63. RS\_DECODER Register Field Descriptions

| Bit  | Field                 | Туре | Reset | Description                                                       |
|------|-----------------------|------|-------|-------------------------------------------------------------------|
| 15   | cfg_rs_decoder_bypass | R/W  | 0h    | Bypass RS decoder  0h = RS decoder in use  1h = Bypass RS decoder |
| 14   | RESERVED              | R    | 0h    | Reserved                                                          |
| 13-8 | RESERVED              | R    | 0h    | Reserved                                                          |
| 7-1  | RESERVED              | R    | 0h    | Reserved                                                          |
| 0    | RESERVED              | R    | 0h    | Reserved                                                          |

## 6.6.2.40 TRAINING\_RX\_STATUS\_7 Register (Offset = 52Bh) [Reset = 0000h]

TRAINING\_RX\_STATUS\_7 is shown in Figure 6-59 and described in Table 6-64.

Return to the Summary Table.

# Figure 6-59. TRAINING\_RX\_STATUS\_7 Register

| 15 | 14       | 13   | 12          | 11       | 10    | 9    | 8 |
|----|----------|------|-------------|----------|-------|------|---|
|    | RESERVED |      | rx_rvrs_pol |          | RESEF | RVED |   |
|    | R-0h     |      | R-0h        |          | R-0   | h    |   |
| 7  | 6        | 5    | 4           | 3        | 2     | 1    | 0 |
|    | RESER    | RVED |             | RESERVED |       |      |   |
|    | R-0      | h    |             |          | R-0   | h    |   |
|    |          |      |             |          |       |      |   |

#### Table 6-64. TRAINING\_RX\_STATUS\_7 Register Field Descriptions

| Bit   | Field       | Туре | Reset | Description                                                                                                             |
|-------|-------------|------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 15-13 | RESERVED    | R    | 0h    | Reserved                                                                                                                |
| 12    | rx_rvrs_pol | R    | 0h    | Received polarity  0h = Polarity decoded from received is not inverted  1h = Polarity decoded from receiver is inverted |
| 11-8  | RESERVED    | R    | 0h    | Reserved                                                                                                                |
| 7-4   | RESERVED    | R    | 0h    | Reserved                                                                                                                |
| 3-0   | RESERVED    | R    | 0h    | Reserved                                                                                                                |

Submit Document Feedback



# 6.6.2.41 LINK\_QUAL\_1 Register (Offset = 543h) [Reset = 0000h]

LINK\_QUAL\_1 is shown in Figure 6-60 and described in Table 6-65.

Return to the Summary Table.

Figure 6-60. LINK\_QUAL\_1 Register

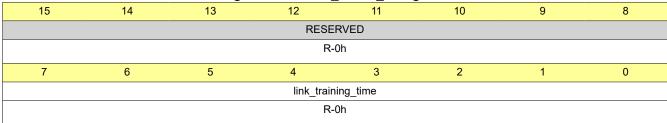
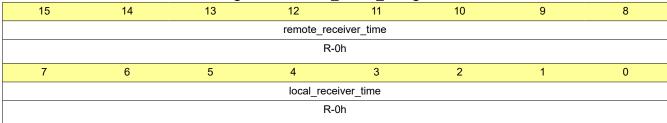



Table 6-65. LINK\_QUAL\_1 Register Field Descriptions

| Bit  | Field              | Туре | Reset | Description                     |
|------|--------------------|------|-------|---------------------------------|
| 15-8 | RESERVED           | R    | 0h    | Reserved                        |
| 7-0  | link_training_time | R    | 0h    | Link training time in ms (TC12) |




# 6.6.2.42 LINK\_QUAL\_2 Register (Offset = 544h) [Reset = 0000h]

LINK\_QUAL\_2 is shown in Figure 6-61 and described in Table 6-66.

Return to the Summary Table.

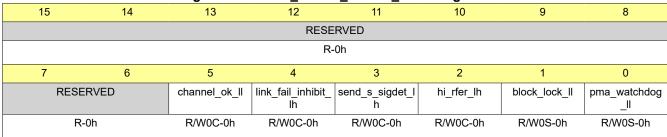
## Figure 6-61. LINK\_QUAL\_2 Register



## Table 6-66. LINK\_QUAL\_2 Register Field Descriptions

| Bit  | Field                | Туре | Reset | Description                       |
|------|----------------------|------|-------|-----------------------------------|
| 15-8 | remote_receiver_time | R    | 0h    | Remote receiver time in ms (TC12) |
| 7-0  | local_receiver_time  | R    | 0h    | Local receiver time in ms (TC12)  |

Product Folder Links: DP83TG720S-Q1


Submit Document Feedback

# 6.6.2.43 LINK\_DOWN\_LATCH\_STAT Register (Offset = 545h) [Reset = 0000h]

LINK\_DOWN\_LATCH\_STAT is shown in Figure 6-62 and described in Table 6-67.

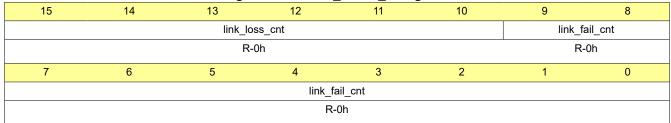
Return to the Summary Table.

Figure 6-62. LINK\_DOWN\_LATCH\_STAT Register



#### Table 6-67. LINK\_DOWN\_LATCH\_STAT Register Field Descriptions

| Bit  | Field                | Туре  | Reset | Description                                                                                          |
|------|----------------------|-------|-------|------------------------------------------------------------------------------------------------------|
| 15-6 | RESERVED             | R     | 0h    | Reserved                                                                                             |
| 5    | channel_ok_ll        | R/W0C | 0h    | 1b = Channel ok was never de-asserted<br>0b = Channel ok was de-asserted                             |
| 4    | link_fail_inhibit_lh | R/W0C | 0h    | 1b = Link fail inhibit assertion was reported<br>0b = Link fail inhibit assertion was never reported |
| 3    | send_s_sigdet_lh     | R/W0C | 0h    | 1b = Send s sigdet assertion was reported<br>0b = Send s sigdet assertion was never reported         |
| 2    | hi_rfer_lh           | R/W0C | 0h    | 1b = High ri rfer assertion was reported<br>0b = High ri rfer assertion was never reported           |
| 1    | block_lock_ll        | R/W0S | 0h    | 1b = Block lock de-assertion was never reported<br>0b = Block lock de-assertion was never reported   |
| 0    | pma_watchdog_ll      | R/W0S | 0h    | 1b = Low pma watchdog was never reported<br>0b = Low pma watchdof was reported                       |




# 6.6.2.44 LINK\_QUAL\_3 Register (Offset = 547h) [Reset = 0000h]

LINK\_QUAL\_3 is shown in Figure 6-63 and described in Table 6-68.

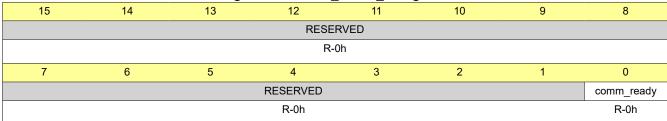
Return to the Summary Table.

## Figure 6-63. LINK\_QUAL\_3 Register



## Table 6-68. LINK\_QUAL\_3 Register Field Descriptions

| Bit   | Field         | Туре | Reset | Description                                                     |
|-------|---------------|------|-------|-----------------------------------------------------------------|
| 15-10 | link_loss_cnt | R    | 0h    | Link loss count since last power cycle (TC12)                   |
| 9-0   | link_fail_cnt | R    | 0h    | Link fail without link loss count since last power cycle (TC12) |


Product Folder Links: DP83TG720S-Q1

# 6.6.2.45 LINK\_QUAL\_4 Register (Offset = 548h) [Reset = 0000h]

LINK\_QUAL\_4 is shown in Figure 6-64 and described in Table 6-69.

Return to the Summary Table.

# Figure 6-64. LINK\_QUAL\_4 Register



## Table 6-69. LINK\_QUAL\_4 Register Field Descriptions

| Bit  | Field      | Туре | Reset | Description                       |
|------|------------|------|-------|-----------------------------------|
| 15-1 | RESERVED   | R    | 0h    | Reserved                          |
| 0    | comm_ready | R    | 0h    | Communication ready status (TC12) |



# 6.6.2.46 RS\_DECODER\_FRAME\_STAT\_2 Register (Offset = 552h) [Reset = 0000h]

RS\_DECODER\_FRAME\_STAT\_2 is shown in Figure 6-65 and described in Table 6-70.

Return to the Summary Table.

Figure 6-65. RS\_DECODER\_FRAME\_STAT\_2 Register

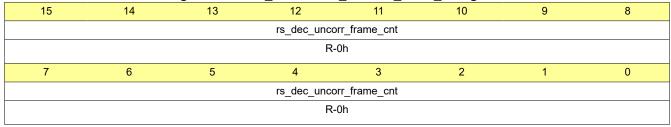



Table 6-70. RS\_DECODER\_FRAME\_STAT\_2 Register Field Descriptions

| Bit  | Field                   | Туре | Reset | Description                                                                    |
|------|-------------------------|------|-------|--------------------------------------------------------------------------------|
| 15-0 | rs_dec_uncorr_frame_cnt | R    | 0h    | No of uncorrectable RS frames received at RS decoder, clear on read, saturates |

Product Folder Links: DP83TG720S-Q1



# 6.6.2.47 RS\_DECODER\_FRAME\_STAT\_3 Register (Offset = 553h) [Reset = 0000h]

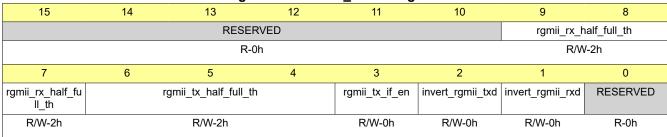
RS\_DECODER\_FRAME\_STAT\_3 is shown in Figure 6-66 and described in Table 6-71.

Return to the Summary Table.

Figure 6-66. RS\_DECODER\_FRAME\_STAT\_3 Register

| 15 | 14                   | 13 | 12 | 11 | 10 | 9 | 8 |  |  |  |
|----|----------------------|----|----|----|----|---|---|--|--|--|
|    | rs_dec_err_frame_cnt |    |    |    |    |   |   |  |  |  |
|    | R-0h                 |    |    |    |    |   |   |  |  |  |
| 7  | 6                    | 5  | 4  | 3  | 2  | 1 | 0 |  |  |  |
|    | rs_dec_err_frame_cnt |    |    |    |    |   |   |  |  |  |
|    | R-0h                 |    |    |    |    |   |   |  |  |  |
| 1  |                      |    |    |    |    |   |   |  |  |  |

Table 6-71. RS\_DECODER\_FRAME\_STAT\_3 Register Field Descriptions


| Bit  | Field                | Туре | Reset | Description                                                                |
|------|----------------------|------|-------|----------------------------------------------------------------------------|
| 15-0 | rs_dec_err_frame_cnt | R    | 0h    | No of erroreous RS frames received at RS decoder, clear on read, saturates |

## 6.6.2.48 RGMII\_CTRL Register (Offset = 600h) [Reset = 0120h]

RGMII\_CTRL is shown in Figure 6-67 and described in Table 6-72.

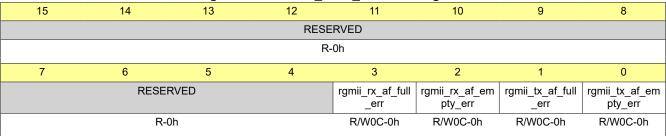
Return to the Summary Table.

## Figure 6-67. RGMII\_CTRL Register



#### Table 6-72. RGMII\_CTRL Register Field Descriptions

| Bit   | Field                 | Туре | Reset | Description                                                                                                                |  |  |  |
|-------|-----------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 15-10 | RESERVED              | R    | 0h    | Reserved                                                                                                                   |  |  |  |
| 9-7   | rgmii_rx_half_full_th | R/W  | 2h    | RGMII RX sync FIFO half full threshold                                                                                     |  |  |  |
| 6-4   | rgmii_tx_half_full_th | R/W  | 2h    | RGMII TX sync FIFO half full threshold                                                                                     |  |  |  |
| 3     | rgmii_tx_if_en        | R/W  | Oh    | RGMII enable bit Default from strap 0h = RGMII disable 1h = RGMII enable                                                   |  |  |  |
| 2     | invert_rgmii_txd      | R/W  | Oh    | Invert RGMII Tx wire order - full swap [3:0] to [0:3]  0h = Keep RGMII Tx wire order same  1h = Invert RGMII Tx wire order |  |  |  |
| 1     | invert_rgmii_rxd      | R/W  | 0h    | Invert RGMII Rx wire order - full swap [3:0] to [0:3] 0h = Keep RGMII Rx wire order same 1h = Invert RGMII Rx wire order   |  |  |  |
| 0     | RESERVED              | R    | 0h    | Reserved                                                                                                                   |  |  |  |


Product Folder Links: DP83TG720S-Q1

# 6.6.2.49 RGMII\_FIFO\_STATUS Register (Offset = 601h) [Reset = 0000h]

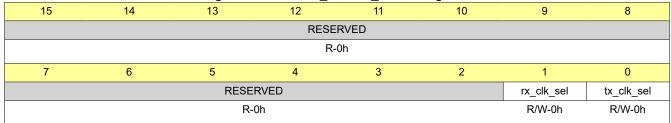
RGMII\_FIFO\_STATUS is shown in Figure 6-68 and described in Table 6-73.

Return to the Summary Table.

# Figure 6-68. RGMII\_FIFO\_STATUS Register



#### Table 6-73. RGMII\_FIFO\_STATUS Register Field Descriptions


| Bit  | Field                 | Туре  | Reset | Description                                                                                     |
|------|-----------------------|-------|-------|-------------------------------------------------------------------------------------------------|
| 15-4 | RESERVED              | R     | 0h    | Reserved                                                                                        |
| 3    | rgmii_rx_af_full_err  | R/W0C | 0h    | RGMII RX fifo full error 0h = No empty fifo error 1h = RGMII TX full error has been indicated   |
| 2    | rgmii_rx_af_empty_err | R/W0C | 0h    | RGMII RX fifo empty error 0h = No empty fifo error 1h = RGMII RX empty error has been indicated |
| 1    | rgmii_tx_af_full_err  | R/W0C | 0h    | RGMII TX fifo full error 0h = No empty fifo error 1h = RGMII TX full error has been indicated   |
| 0    | rgmii_tx_af_empty_err | R/W0C | Oh    | RGMII TX fifo empty error 0h = No empty fifo error 1h = RGMII TX empty error has been indicated |

# 6.6.2.50 RGMII\_DELAY\_CTRL Register (Offset = 602h) [Reset = 0000h]

RGMII\_DELAY\_CTRL is shown in Figure 6-69 and described in Table 6-74.

Return to the Summary Table.

# Figure 6-69. RGMII\_DELAY\_CTRL Register



# Table 6-74. RGMII\_DELAY\_CTRL Register Field Descriptions

|      |            | _    |       | t= regions riola zooonphiono                                                                                                                                                                                                                                                                  |
|------|------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit  | Field      | Туре | Reset | Description                                                                                                                                                                                                                                                                                   |
| 15-2 | RESERVED   | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                      |
| 1    | rx_clk_sel | R/W  | Oh    | In RGMII mode, Enable or disable the internal delay for RXD wrt RX_CLK (use this mode when RGMII_RX_CLK and RGMII_RXD are aligned). The delay magnitude can be configured by programming register 0x430[7:4]  0h = clock and data are aligned 1h = clock is delayed relative to RGMII_RX data |
| 0    | tx_clk_sel | R/W  | Oh    | In RGMII mode, Enable or disable the internal delay for TXD wrt TX_CLK (use this mode when RGMII_TX_CLK and RGMII_TXD are aligned). The delay magnitude can be configured by programming register 0x430[11:8]  0h = clock and data are aligned 1h = clock is internally delayed               |

# 6.6.2.51 SGMII\_CTRL\_1 Register (Offset = 608h) [Reset = 007Bh]

SGMII\_CTRL\_1 is shown in Figure 6-70 and described in Table 6-75.

Return to the Summary Table.

SGMII Register: Available only on DP83TG720S-Q1

### Figure 6-70. SGMII\_CTRL\_1 Register

|                             |                         | 9•   |                     | <u></u>  | g. 0 t 0 t          |        |              |  |  |
|-----------------------------|-------------------------|------|---------------------|----------|---------------------|--------|--------------|--|--|
| 15                          | 14                      | 13   | 12                  | 11       | 10                  | 9      | 8            |  |  |
| sgmii_tx_err_di<br>s        | cfg_align_idx_fo<br>rce |      | cfg_align_idx_value |          |                     |        |              |  |  |
| R/W-0h                      | R/W-0h                  |      | R/V                 | V-0h     |                     | R/W-0h | R/W-0h       |  |  |
| 7                           | 6                       | 5    | 4                   | 3        | 2                   | 1      | 0            |  |  |
| cfg_sgmii_tx_po<br>I_invert | RESE                    | RVED | RESERVED            | RESERVED | sgmii_autoneg_timer |        | mr_an_enable |  |  |
| R/W-0h                      | R-                      | 0h   | R-0h                | R-0h     | R/V                 | V-1h   | R/W-1h       |  |  |

# Table 6-75. SGMII\_CTRL\_1 Register Field Descriptions

| Bit   | Field                   | Туре | Reset | Description                                                                               |
|-------|-------------------------|------|-------|-------------------------------------------------------------------------------------------|
| 15    | sgmii_tx_err_dis        | R/W  | 0h    | 1 = Disable SGMII TX Error indication<br>0 = Enable SGMII TX Error indication             |
| 14    | cfg_align_idx_force     | R/W  | 0h    | Force word boundray index selection                                                       |
| 13-10 | cfg_align_idx_value     | R/W  | 0h    | when cfg_align_idx_force = 1 This value set the iword boundray index                      |
| 9     | cfg_sgmii_en            | R/W  | 0h    | SGMII enable bit Default from strap 0h = SGMII disable 1h = SGMII enable                  |
| 8     | cfg_sgmii_rx_pol_invert | R/W  | 0h    | SGMII RX bus invert polarity 0h = Polarity not inverted 1h = SGMII RX bus invert polarity |
| 7     | cfg_sgmii_tx_pol_invert | R/W  | 0h    | SGMII TX bus invert polarity 0h = Polarity not inverted 1h = SGMII TX bus invert polarity |
| 6-5   | RESERVED                | R    | 0h    | Reserved                                                                                  |
| 4     | RESERVED                | R    | 0h    | Reserved                                                                                  |
| 3     | RESERVED                | R    | 0h    | Reserved                                                                                  |
| 2-1   | sgmii_autoneg_timer     | R/W  | 1h    | Selects duration of SGMII Auto-Negotiation timer: 00: 1.6ms 01: 2us 10: 800us 11: 11ms    |
| 0     | mr_an_enable            | R/W  | 1h    | 1 = Enable SGMII Auto-Negotaition<br>0 = Disable SGMII Auto-Negotiation                   |

#### 6.6.2.52 SGMII\_STATUS Register (Offset = 60Ah) [Reset = 0000h]

SGMII\_STATUS is shown in Figure 6-71 and described in Table 6-76.

Return to the Summary Table.

SGMII Register: Available only on DP83TG720S-Q1

#### Figure 6-71. SGMII STATUS Register

|    |           |       |                         |                        | <u>,                                      </u> |              |                 |
|----|-----------|-------|-------------------------|------------------------|------------------------------------------------|--------------|-----------------|
| 15 | 14        | 13    | 12                      | 11                     | 10                                             | 9            | 8               |
|    | RESERVED  |       | sgmii_page_rec<br>eived | link_status_100<br>0bx | mr_an_complet<br>e                             | cfg_align_en | cfg_sync_status |
|    | R-0h      |       | R-0h                    | R-0h                   | R-0h                                           | R-0h         | R-0h            |
| 7  | 6         | 5     | 4                       | 3                      | 2                                              | 1            | 0               |
|    | cfg_aligi | n_idx |                         | cfg_state              |                                                |              |                 |
|    | R-01      | h     |                         |                        | R-                                             | 0h           |                 |

#### Table 6-76. SGMII\_STATUS Register Field Descriptions

| Bit   | Field               | Туре | Reset | Description                                                                                                            |
|-------|---------------------|------|-------|------------------------------------------------------------------------------------------------------------------------|
| 15-13 | RESERVED            | R    | 0h    | Reserved                                                                                                               |
| 12    | sgmii_page_received | R    | 0h    | Indicates that a new auto neg page was received  0h = No new auto neg page received  1h = A new auto neg page received |
| 11    | link_status_1000bx  | R    | 0h    | sgmii link status 0h = SGMII link down 1h = SGMII link up                                                              |
| 10    | mr_an_complete      | R    | 0h    | sgmii autoneg complete indication 0h = SGMII autoneg not completed 1h = SGMII autoneg completed                        |
| 9     | cfg_align_en        | R    | 0h    | word boundary FSM - align indication                                                                                   |
| 8     | cfg_sync_status     | R    | 0h    | word boundary FSM - sync status indication 0h = sync not achieved 1h = sync achieved                                   |
| 7-4   | cfg_align_idx       | R    | 0h    | word boundary index selection                                                                                          |
| 3-0   | cfg_state           | R    | 0h    | word boundary FSM state                                                                                                |

# 6.6.2.53 SGMII\_CTRL\_2 Register (Offset = 60Ch) [Reset = 001Bh]

SGMII\_CTRL\_2 is shown in Figure 6-72 and described in Table 6-77.

Return to the Summary Table.

SGMII Register: Available only on DP83TG720S-Q1

#### Figure 6-72. SGMII\_CTRL\_2 Register

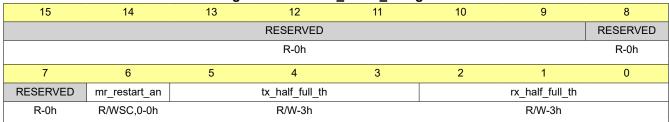
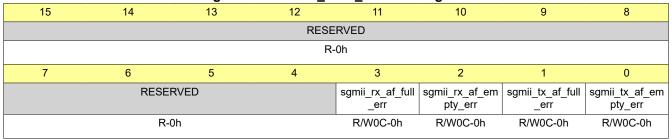



Table 6-77. SGMII\_CTRL\_2 Register Field Descriptions

| Bit  | Field           | Туре    | Reset | Description                            |
|------|-----------------|---------|-------|----------------------------------------|
| 15-9 | RESERVED        | R       | 0h    | Reserved                               |
| 8    | RESERVED        | R       | 0h    | Reserved                               |
| 7    | RESERVED        | R       | 0h    | Reserved                               |
| 6    | mr_restart_an   | R/WSC,0 | 0h    | Restart sgmii autonegotiation          |
| 5-3  | tx_half_full_th | R/W     | 3h    | SGMII TX sync FIFO half full threshold |
| 2-0  | rx_half_full_th | R/W     | 3h    | SGMII RX sync FIFO half full threshold |




#### 6.6.2.54 SGMII\_FIFO\_STATUS Register (Offset = 60Dh) [Reset = 0000h]

SGMII\_FIFO\_STATUS is shown in Figure 6-73 and described in Table 6-78.

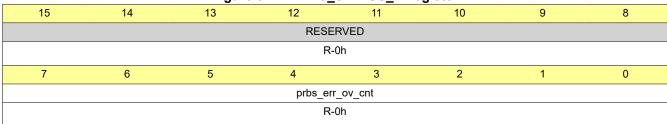
Return to the Summary Table.

SGMII Register: Available only on DP83TG720S-Q1

#### Figure 6-73. SGMII\_FIFO\_STATUS Register



### Table 6-78. SGMII\_FIFO\_STATUS Register Field Descriptions


| Bit  | Field                 | Туре  | Reset | Description                                                                                            |
|------|-----------------------|-------|-------|--------------------------------------------------------------------------------------------------------|
| 15-4 | RESERVED              | R     | 0h    | Reserved                                                                                               |
| 3    | sgmii_rx_af_full_err  | R/W0C | 0h    | SGMII RX fifo full error  0h = No error indication  1h = SGMII RX fifo full error has been indicated   |
| 2    | sgmii_rx_af_empty_err | R/W0C | 0h    | SGMII RX fifo empty error  0h = No error indication  1h = SGMII RX fifo empty error has been indicated |
| 1    | sgmii_tx_af_full_err  | R/W0C | 0h    | SGMII TX fifo full error 0h = No error indication 1h = SGMII TX fifo full error has been indicated     |
| 0    | sgmii_tx_af_empty_err | R/W0C | Oh    | SGMII TX fifo empty error 0h = No error indication 1h = SGMII TX fifo empty error has been indicated   |

# 6.6.2.55 PRBS\_STATUS\_1 Register (Offset = 618h) [Reset = 0000h]

PRBS\_STATUS\_1 is shown in Figure 6-74 and described in Table 6-79.

Return to the Summary Table.

# Figure 6-74. PRBS\_STATUS\_1 Register



# Table 6-79. PRBS\_STATUS\_1 Register Field Descriptions

| Bit  | Field           | Туре | Reset | Description                                                                                                                                                                                                                                                                     |
|------|-----------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-8 | RESERVED        | R    | 0h    | Reserved                                                                                                                                                                                                                                                                        |
| 7-0  | prbs_err_ov_cnt | R    |       | Holds number of error counter overflow that received by the PRBS checker.  Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1]. Counter stops on 0xFF.  Note: when PRBS counters work in single mode, overflow counter is not active |

# 6.6.2.56 PRBS\_CTRL\_1 Register (Offset = 619h) [Reset = 0574h]

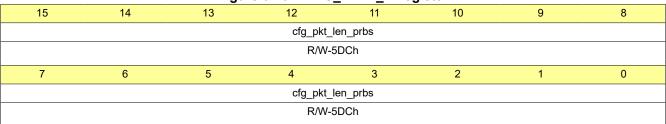
PRBS\_CTRL\_1 is shown in Figure 6-75 and described in Table 6-80.

Return to the Summary Table.

# Figure 6-75. PRBS\_CTRL\_1 Register

| 15       | 14                     | 13       | 12         | 11                    | 10                      | 9                    | 8          |
|----------|------------------------|----------|------------|-----------------------|-------------------------|----------------------|------------|
| RESE     | RVED                   | RESERVED | send_pkt   | RESERVED              |                         | cfg_prbs_chk_sel     |            |
| R-       | 0h                     | R-0h     | R/WMC,0-0h | R-0h                  |                         | R/W-5h               |            |
| 7        | 6                      | 5        | 4          | 3                     | 2                       | 1                    | 0          |
| RESERVED | ERVED cfg_prbs_gen_sel |          |            | cfg_prbs_cnt_m<br>ode | cfg_prbs_chk_e<br>nable | cfg_pkt_gen_pr<br>bs | pkt_gen_en |
| R-0h     |                        | R/W-7h   |            | R/W-0h                | R/W-1h                  | R/W-0h               | R/W-0h     |

# Table 6-80. PRBS\_CTRL\_1 Register Field Descriptions


| Bit   | Field               |         | Reset | 1 Register Field Descriptions  Description                                                                                                                                                                                                                                                                                               |
|-------|---------------------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                     | Туре    |       | •                                                                                                                                                                                                                                                                                                                                        |
| 15-14 | RESERVED            | R       | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                 |
| 13    | RESERVED            | R       | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                 |
| 12    | send_pkt            | R/WMC,0 | Oh    | Enables generating MAC packet with fix/incremental data w CRC (pkt_gen_en has to be set and cfg_pkt_gen_prbs has to be clear) Cleared automatically when pkt_done is set 0h = Stop MAC packet 1h = Transmit MAC packet w CRC                                                                                                             |
| 11    | RESERVED            | R       | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                 |
| 10-8  | cfg_prbs_chk_sel    | R/W     | 5h    | 000 : Checker receives from RGMII TX<br>001 : Checker receives SGMII TX<br>101 : Checker receives from Cu RX                                                                                                                                                                                                                             |
| 7     | RESERVED            | R       | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                 |
| 6-4   | cfg_prbs_gen_sel    | R/W     | 7h    | 000 : PRBS transmits to RGMII RX<br>001 : PRBS transmits to SGMII RX<br>101 : PRBS transmits to Cu TX                                                                                                                                                                                                                                    |
| 3     | cfg_prbs_cnt_mode   | R/W     | 0h    | 1 = Continuous mode, when one of the PRBS counters reaches max value, pulse is generated and counter starts counting from zero again     0 = Single mode, When one of the PRBS counters reaches max value, PRBS checker stops counting.                                                                                                  |
| 2     | cfg_prbs_chk_enable | R/W     | 1h    | Enable PRBS checker xbar (to receive data) To be enabled for counters in 0x63C, 0x63D, 0x63E to work 0h = Disable PRBS checker 1h = Enable PRBS checker                                                                                                                                                                                  |
| 1     | cfg_pkt_gen_prbs    | R/W     | Oh    | If set: (1) When pkt_gen_en is set, PRBS packets are generated continuously (3) When pkt_gen_en is cleared, PRBS RX checker is still enabled If cleared: (1) When pkt_gen_en is set, non - PRBS packet is generated (3) When pkt_gen_en is cleared, PRBS RX checker is disabled as well  0h = Stop PRBS packet 1h = Transmit PRBS packet |
| 0     | pkt_gen_en          | R/W     | 0h    | 1 = Enable packet/PRBS generator 0 = Disable packet/PRBS generator                                                                                                                                                                                                                                                                       |

# 6.6.2.57 PRBS\_CTRL\_2 Register (Offset = 61Ah) [Reset = 05DCh]

PRBS\_CTRL\_2 is shown in Figure 6-76 and described in Table 6-81.

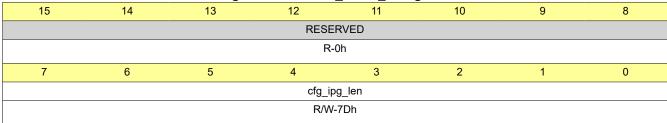
Return to the Summary Table.

# Figure 6-76. PRBS\_CTRL\_2 Register



# Table 6-81. PRBS\_CTRL\_2 Register Field Descriptions

| Bit  | Field            | Туре | Reset | Description                                             |
|------|------------------|------|-------|---------------------------------------------------------|
| 15-0 | cfg_pkt_len_prbs | R/W  | 5DCh  | Length (in bytes) of PRBS packets and MAC packets w CRC |




# 6.6.2.58 PRBS\_CTRL\_3 Register (Offset = 61Bh) [Reset = 007Dh]

PRBS\_CTRL\_3 is shown in Figure 6-77 and described in Table 6-82.

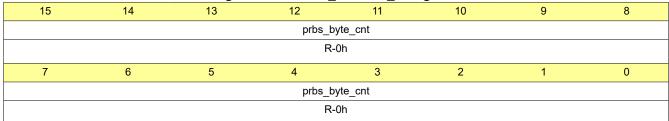
Return to the Summary Table.

# Figure 6-77. PRBS\_CTRL\_3 Register



# Table 6-82. PRBS\_CTRL\_3 Register Field Descriptions

| Bit  | Field       | Туре | Reset | Description                                 |
|------|-------------|------|-------|---------------------------------------------|
| 15-8 | RESERVED    | R    | 0h    | Reserved                                    |
| 7-0  | cfg_ipg_len | R/W  | 7Dh   | Inter-packet gap (in bytes) between packets |




# 6.6.2.59 PRBS\_STATUS\_2 Register (Offset = 61Ch) [Reset = 0000h]

PRBS\_STATUS\_2 is shown in Figure 6-78 and described in Table 6-83.

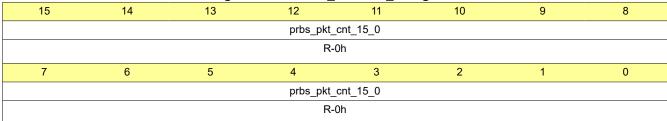
Return to the Summary Table.

# Figure 6-78. PRBS\_STATUS\_2 Register



# Table 6-83. PRBS\_STATUS\_2 Register Field Descriptions

| Bit  | Field         | Туре | Reset | Description                                                                                                                                                                                                              |
|------|---------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0 | prbs_byte_cnt | R    | 0h    | Holds number of total bytes that received by the PRBS checker.  Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1].  When PRBS Count Mode set to zero, count stops on 0xFFFF |




#### 6.6.2.60 PRBS\_STATUS\_3 Register (Offset = 61Dh) [Reset = 0000h]

PRBS\_STATUS\_3 is shown in Figure 6-79 and described in Table 6-84.

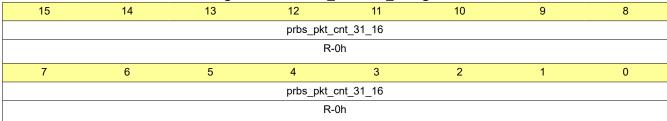
Return to the Summary Table.

# Figure 6-79. PRBS\_STATUS\_3 Register



### Table 6-84. PRBS\_STATUS\_3 Register Field Descriptions

| Bit  | Field             | Туре | Reset | Description                                                                                                                                                                                                                      |
|------|-------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0 | prbs_pkt_cnt_15_0 | R    |       | Bits [15:0] of number of total packets received by the PRBS checker Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1].  When PRBS Count Mode set to zero, count stops on 0xFFFFFFFF |




# 6.6.2.61 PRBS\_STATUS\_4 Register (Offset = 61Eh) [Reset = 0000h]

PRBS\_STATUS\_4 is shown in Figure 6-80 and described in Table 6-85.

Return to the Summary Table.

# Figure 6-80. PRBS\_STATUS\_4 Register



# Table 6-85. PRBS\_STATUS\_4 Register Field Descriptions

| В  | Bit | Field              | Туре | Reset | Description                                                                                                                                                                                                                     |
|----|-----|--------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | 5-0 | prbs_pkt_cnt_31_16 | R    | 0h    | Bits [31:16] of number of total packets received by the PRBS checker Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1]. When PRBS Count Mode set to zero, count stops on 0xFFFFFFF |

# 6.6.2.62 PRBS\_STATUS\_6 Register (Offset = 620h) [Reset = 0000h]

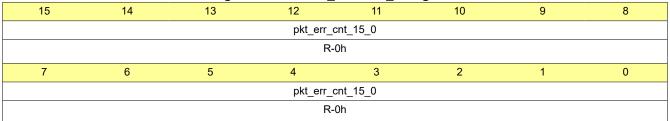
PRBS\_STATUS\_6 is shown in Figure 6-81 and described in Table 6-86.

Return to the Summary Table.

# Figure 6-81. PRBS\_STATUS\_6 Register

| 15 | 14           | 13 | 12       | 11           | 10          | 9            | 8         |  |
|----|--------------|----|----------|--------------|-------------|--------------|-----------|--|
|    | RESERVED     |    | pkt_done | pkt_gen_busy | prbs_pkt_ov | prbs_byte_ov | prbs_lock |  |
|    | R-0h         |    | R-0h     | R-0h         | R-0h        | R-0h         | R-0h      |  |
| 7  | 6            | 5  | 4        | 3            | 2           | 1            | 0         |  |
|    | prbs_err_cnt |    |          |              |             |              |           |  |
|    |              |    | R-       | -0h          |             |              |           |  |
|    |              |    |          |              |             |              |           |  |

# Table 6-86. PRBS\_STATUS\_6 Register Field Descriptions


| Bit   | Field        | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                       |
|-------|--------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-13 | RESERVED     | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                          |
| 12    | pkt_done     | R    | 0h    | Set when all MAC packets w CRC are transmitted  0h = MAC packet transmission in progress  1h = MAC packets transmission completed                                                                                                                                                                                                 |
| 11    | pkt_gen_busy | R    | 0h    | 1 = Packet generator is in process 0 = Packet generator is not in process                                                                                                                                                                                                                                                         |
| 10    | prbs_pkt_ov  | R    | Oh    | If set, packet counter reached overflow Overflow is cleared when PRBS counters are cleared - done by setting bit #1 of prbs_status_6 0h = No overflow 1h = Packet counter overflow                                                                                                                                                |
| 9     | prbs_byte_ov | R    | 0h    | If set, bytes counter reached overflow Overflow is cleared when PRBS counters are cleared - done by setting bit #1of prbs_status_6 0h = No overflow 1h = byte counter overflow                                                                                                                                                    |
| 8     | prbs_lock    | R    | Oh    | 1 = PRBS checker is locked sync) on received byte stream 0 = PRBS checker is not locked 0h = PRBS checker is not locked 1h = PRBS checker is locked sync) on received byte stream                                                                                                                                                 |
| 7-0   | prbs_err_cnt | R    | 0h    | Holds number of errored bits received by the PRBS checker Value in this register is locked when write is done to bit[0] or bit[1] When PRBS Count Mode set to zero, count stops on 0xFF Notes: Writing bit 0 generates a lock signal for the PRBS counters. Writing bit 1 generates a lock and clear signal for the PRBS counters |

# 6.6.2.63 PRBS\_STATUS\_8 Register (Offset = 622h) [Reset = 0000h]

PRBS\_STATUS\_8 is shown in Figure 6-82 and described in Table 6-87.

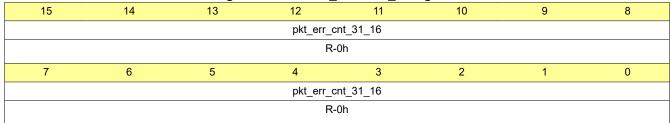
Return to the Summary Table.

# Figure 6-82. PRBS\_STATUS\_8 Register



# Table 6-87. PRBS\_STATUS\_8 Register Field Descriptions

| В  | it  | Field            | Туре | Reset | Description                                                                                                                                                                                                                                 |
|----|-----|------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | 5-0 | pkt_err_cnt_15_0 | R    | 0h    | Bits [15:0] of number of total packets with error received by the PRBS checker  Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1].  When PRBS Count Mode set to zero, count stops on 0xFFFFFFF |




#### 6.6.2.64 PRBS\_STATUS\_9 Register (Offset = 623h) [Reset = 0000h]

PRBS\_STATUS\_9 is shown in Figure 6-83 and described in Table 6-88.

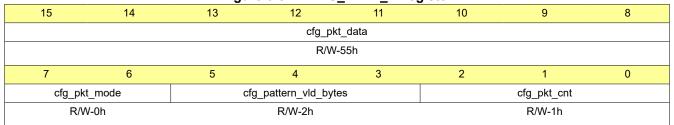
Return to the Summary Table.

# Figure 6-83. PRBS\_STATUS\_9 Register



#### Table 6-88. PRBS\_STATUS\_9 Register Field Descriptions

| Bit  | Field             | Туре | Reset | Description                                                                                                                                                                                                                                  |
|------|-------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0 | pkt_err_cnt_31_16 | R    | 0h    | Bits [31:16] of number of total packets with error received by the PRBS checker  Value in this register is locked when write is done to register prbs_status_6 bit[0] or bit[1].  When PRBS Count Mode set to zero, count stops on 0xFFFFFFF |




# 6.6.2.65 PRBS\_CTRL\_4 Register (Offset = 624h) [Reset = 5511h]

PRBS\_CTRL\_4 is shown in Figure 6-84 and described in Table 6-89.

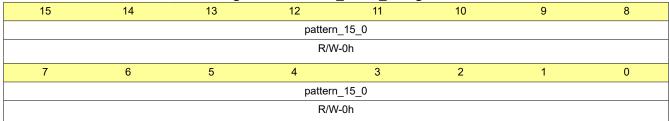
Return to the Summary Table.

# Figure 6-84. PRBS\_CTRL\_4 Register



#### Table 6-89. PRBS\_CTRL\_4 Register Field Descriptions

| Bit  | Field                 | Туре | Reset | Description                                                                                                                                                                               |
|------|-----------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-8 | cfg_pkt_data          | R/W  | 55h   | Fixed data to be sent in Fix data mode                                                                                                                                                    |
| 7-6  | cfg_pkt_mode          | R/W  | 0h    | 0h = Incremental<br>1h = Fixed<br>2h = PRBS<br>3h = PRBS                                                                                                                                  |
| 5-3  | cfg_pattern_vld_bytes | R/W  | 2h    | Number of bytes of valid pattern in packet (Max - 6) 0h = 0 bytes 1h = 1 bytes 2h = 2 bytes 3h = 3 bytes 4h = 4 bytes 5h = 5 bytes 6h = 6 bytes 7h = 6 bytes                              |
| 2-0  | cfg_pkt_cnt           | R/W  | 1h    | 000b = 1 packet<br>001b = 10 packets<br>010b = 100 packets<br>011b = 1000 packets<br>100b = 10000 packets<br>101b = 100000 packets<br>110b = 1000000 packets<br>111b = Continuous packets |




# 6.6.2.66 PRBS\_CTRL\_5 Register (Offset = 625h) [Reset = 0000h]

PRBS\_CTRL\_5 is shown in Figure 6-85 and described in Table 6-90.

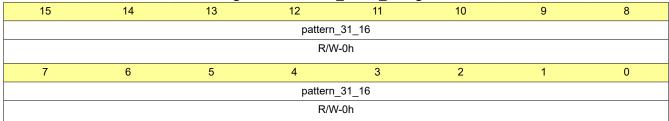
Return to the Summary Table.

# Figure 6-85. PRBS\_CTRL\_5 Register



# Table 6-90. PRBS\_CTRL\_5 Register Field Descriptions

| Bit  | Field        | Туре | Reset | Description          |
|------|--------------|------|-------|----------------------|
| 15-0 | pattern_15_0 | R/W  | 0h    | Bits 15:0 of pattern |


Submit Document Feedback

# 6.6.2.67 PRBS\_CTRL\_6 Register (Offset = 626h) [Reset = 0000h]

PRBS\_CTRL\_6 is shown in Figure 6-86 and described in Table 6-91.

Return to the Summary Table.

# Figure 6-86. PRBS\_CTRL\_6 Register



### Table 6-91. PRBS\_CTRL\_6 Register Field Descriptions

| Bit  | Field         | Туре | Reset | Description           |
|------|---------------|------|-------|-----------------------|
| 15-0 | pattern_31_16 | R/W  | 0h    | Bits 31:16 of pattern |



# 6.6.2.68 PRBS\_CTRL\_7 Register (Offset = 627h) [Reset = 0000h]

PRBS\_CTRL\_7 is shown in Figure 6-87 and described in Table 6-92.

Return to the Summary Table.

Figure 6-87. PRBS\_CTRL\_7 Register

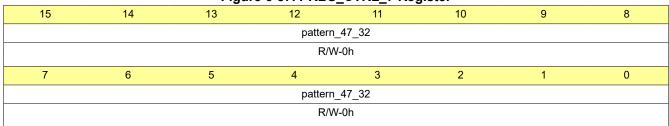



Table 6-92. PRBS\_CTRL\_7 Register Field Descriptions

| Bit  | Field         | Туре | Reset | Description           |
|------|---------------|------|-------|-----------------------|
| 15-0 | pattern_47_32 | R/W  | 0h    | Bits 47:32 of pattern |

Product Folder Links: DP83TG720S-Q1

128



# 6.6.2.69 PRBS\_CTRL\_8 Register (Offset = 628h) [Reset = 0000h]

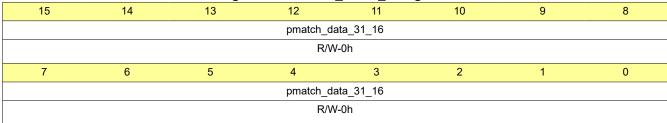
PRBS\_CTRL\_8 is shown in Figure 6-88 and described in Table 6-93.

Return to the Summary Table.

#### Figure 6-88. PRBS\_CTRL\_8 Register

|        |                  |    |    |         |           | •  |   |   |
|--------|------------------|----|----|---------|-----------|----|---|---|
|        | 15               | 14 | 13 | 12      | 11        | 10 | 9 | 8 |
|        |                  |    |    | pmatch_ | data_15_0 |    |   |   |
| R/W-0h |                  |    |    |         |           |    |   |   |
|        | 7                | 6  | 5  | 4       | 3         | 2  | 1 | 0 |
|        | pmatch_data_15_0 |    |    |         |           |    |   |   |
|        |                  |    |    | R/V     | V-0h      |    |   |   |
|        |                  |    |    |         |           |    |   |   |

# Table 6-93. PRBS\_CTRL\_8 Register Field Descriptions


| Bit  | Field            | Туре | Reset | Description                                                               |
|------|------------------|------|-------|---------------------------------------------------------------------------|
| 15-0 | pmatch_data_15_0 | R/W  | 0h    | Bits 15:0 of Perfect Match Data - used for DA (destination address) match |

# 6.6.2.70 PRBS\_CTRL\_9 Register (Offset = 629h) [Reset = 0000h]

PRBS\_CTRL\_9 is shown in Figure 6-89 and described in Table 6-94.

Return to the Summary Table.

# Figure 6-89. PRBS\_CTRL\_9 Register



# Table 6-94. PRBS\_CTRL\_9 Register Field Descriptions

| Bit  | Field             | Туре | Reset | Description                                                                |
|------|-------------------|------|-------|----------------------------------------------------------------------------|
| 15-0 | pmatch_data_31_16 | R/W  | 0h    | Bits 31:16 of Perfect Match Data - used for DA (destination address) match |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



# 6.6.2.71 PRBS\_CTRL\_10 Register (Offset = 62Ah) [Reset = 0000h]

PRBS\_CTRL\_10 is shown in Figure 6-90 and described in Table 6-95.

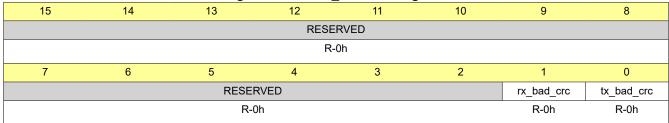
Return to the Summary Table.

#### Figure 6-90. PRBS\_CTRL\_10 Register

|        |                   |    |    |          |           | •  |   |   |
|--------|-------------------|----|----|----------|-----------|----|---|---|
|        | 15                | 14 | 13 | 12       | 11        | 10 | 9 | 8 |
|        |                   |    |    | pmatch_d | ata_47_32 |    |   |   |
| R/W-0h |                   |    |    |          |           |    |   |   |
|        | 7                 | 6  | 5  | 4        | 3         | 2  | 1 | 0 |
|        | pmatch_data_47_32 |    |    |          |           |    |   |   |
|        |                   |    |    | R/V      | V-0h      |    |   |   |
|        |                   |    |    |          |           |    |   |   |

# Table 6-95. PRBS\_CTRL\_10 Register Field Descriptions

| Bit  | Field             | Туре | Reset | Description                                                                |
|------|-------------------|------|-------|----------------------------------------------------------------------------|
| 15-0 | pmatch_data_47_32 | R/W  | 0h    | Bits 47:32 of Perfect Match Data - used for DA (destination address) match |




# 6.6.2.72 CRC\_STATUS Register (Offset = 638h) [Reset = 0000h]

CRC\_STATUS is shown in Figure 6-91 and described in Table 6-96.

Return to the Summary Table.

# Figure 6-91. CRC\_STATUS Register



# Table 6-96. CRC\_STATUS Register Field Descriptions

| Bit  | Field      | Туре | Reset | Description                                                                          |
|------|------------|------|-------|--------------------------------------------------------------------------------------|
| 15-2 | RESERVED   | R    | 0h    | Reserved                                                                             |
| 1    | rx_bad_crc | R    |       | CRC error indication in packet received on Cu RX 0h = No CRC error 1h = CRC error    |
| 0    | tx_bad_crc | R    | 0h    | CRC error indication in packet transmitted on Cu TX 0h = No CRC error 1h = CRC error |



# 6.6.2.73 PKT\_STAT\_1 Register (Offset = 639h) [Reset = 0000h]

PKT\_STAT\_1 is shown in Figure 6-92 and described in Table 6-97.

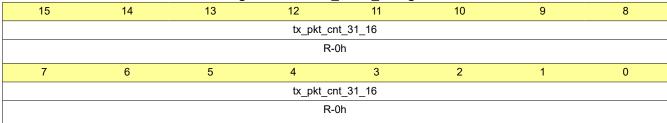
Return to the Summary Table.

# Figure 6-92. PKT\_STAT\_1 Register

| 15              | 14 | 13 | 12       | 11       | 10 | 9 | 8 |
|-----------------|----|----|----------|----------|----|---|---|
|                 |    |    | tx_pkt_c | ont_15_0 |    |   |   |
|                 |    |    | R-       | ·0h      |    |   |   |
| 7               | 6  | 5  | 4        | 3        | 2  | 1 | 0 |
| tx_pkt_cnt_15_0 |    |    |          |          |    |   |   |
|                 |    |    | R-       | 0h       |    |   |   |
| 1               |    |    |          |          |    |   |   |

# Table 6-97. PKT\_STAT\_1 Register Field Descriptions

| Bit  | Field           | Туре | Reset | Description                                                                                                |
|------|-----------------|------|-------|------------------------------------------------------------------------------------------------------------|
| 15-0 | tx_pkt_cnt_15_0 | R    |       | Lower 16 bits of Tx packet counter Note: Register is cleared when 0x639, 0x63A, 0x63B are read in sequence |




# 6.6.2.74 PKT\_STAT\_2 Register (Offset = 63Ah) [Reset = 0000h]

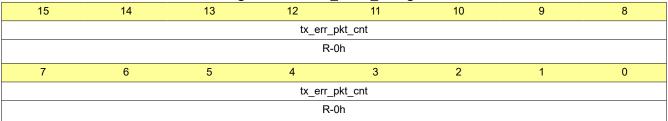
PKT\_STAT\_2 is shown in Figure 6-93 and described in Table 6-98.

Return to the Summary Table.

# Figure 6-93. PKT\_STAT\_2 Register



# Table 6-98. PKT\_STAT\_2 Register Field Descriptions


| Bit  | Field            | Туре | Reset | Description                                                                                                |
|------|------------------|------|-------|------------------------------------------------------------------------------------------------------------|
| 15-0 | tx_pkt_cnt_31_16 | R    | 0h    | Upper 16 bits of Tx packet counter Note: Register is cleared when 0x639, 0x63A, 0x63B are read in sequence |

# 6.6.2.75 PKT\_STAT\_3 Register (Offset = 63Bh) [Reset = 0000h]

PKT\_STAT\_3 is shown in Figure 6-94 and described in Table 6-99.

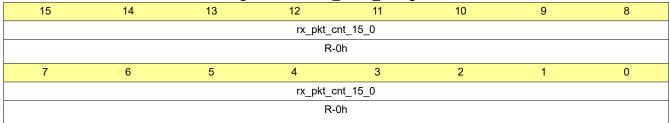
Return to the Summary Table.

# Figure 6-94. PKT\_STAT\_3 Register



# Table 6-99. PKT\_STAT\_3 Register Field Descriptions

| Bit  | Field          | Туре | Reset | Description                                                                                                    |
|------|----------------|------|-------|----------------------------------------------------------------------------------------------------------------|
| 15-0 | tx_err_pkt_cnt | R    | 0h    | Tx packet w error (CRC error) counter  Note: Register is cleared when 0x639, 0x63A, 0x63B are read in sequence |




# 6.6.2.76 PKT\_STAT\_4 Register (Offset = 63Ch) [Reset = 0000h]

PKT\_STAT\_4 is shown in Figure 6-95 and described in Table 6-100.

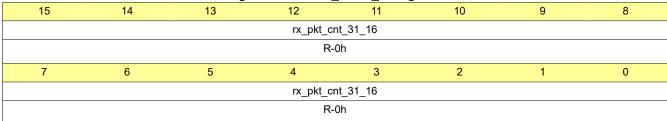
Return to the Summary Table.

# Figure 6-95. PKT\_STAT\_4 Register



# Table 6-100. PKT\_STAT\_4 Register Field Descriptions

| Bit  | Field           | Туре | Reset | Description                                                                                                |
|------|-----------------|------|-------|------------------------------------------------------------------------------------------------------------|
| 15-0 | rx_pkt_cnt_15_0 | R    |       | Lower 16 bits of Rx packet counter Note: Register is cleared when 0x63C, 0x63D, 0x63E are read in sequence |




# 6.6.2.77 PKT\_STAT\_5 Register (Offset = 63Dh) [Reset = 0000h]

PKT\_STAT\_5 is shown in Figure 6-96 and described in Table 6-101.

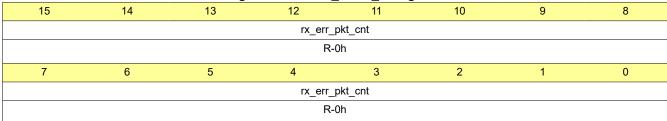
Return to the Summary Table.

# Figure 6-96. PKT\_STAT\_5 Register



# Table 6-101. PKT\_STAT\_5 Register Field Descriptions

| Bit  | Field            | Туре | Reset | Description                                                                                                |
|------|------------------|------|-------|------------------------------------------------------------------------------------------------------------|
| 15-0 | rx_pkt_cnt_31_16 | R    |       | Upper 16 bits of Rx packet counter Note: Register is cleared when 0x63C, 0x63D, 0x63E are read in sequence |




# 6.6.2.78 PKT\_STAT\_6 Register (Offset = 63Eh) [Reset = 0000h]

PKT\_STAT\_6 is shown in Figure 6-97 and described in Table 6-102.

Return to the Summary Table.

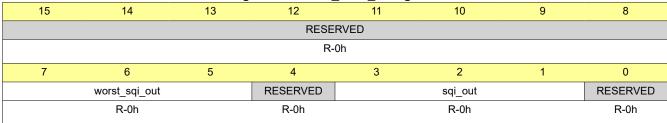
# Figure 6-97. PKT\_STAT\_6 Register



# Table 6-102. PKT\_STAT\_6 Register Field Descriptions

| Bit  | Field          | Туре | Reset | Description                                                                                                    |
|------|----------------|------|-------|----------------------------------------------------------------------------------------------------------------|
| 15-0 | rx_err_pkt_cnt | R    |       | Rx packet w error (CRC error) counter  Note: Register is cleared when 0x63C, 0x63D, 0x63E are read in sequence |

Product Folder Links: DP83TG720S-Q1


138

# 6.6.2.79 SQI\_REG\_1 Register (Offset = 871h) [Reset = 0000h]

SQI\_REG\_1 is shown in Figure 6-98 and described in Table 6-103.

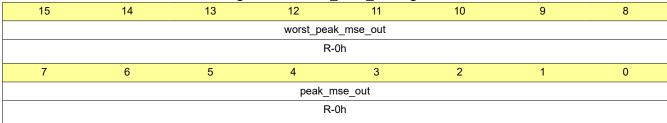
Return to the Summary Table.

# Figure 6-98. SQI\_REG\_1 Register



### Table 6-103. SQI\_REG\_1 Register Field Descriptions

| Bit  | Field         | Туре | Reset | Description                                                                                                                                                                                                                          |
|------|---------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-8 | RESERVED      | R    | 0h    | Reserved                                                                                                                                                                                                                             |
| 7-5  | worst_sqi_out | R    | 0h    | 3 bit Worst SQI since last read (see SQI mapping above)<br>Cleared on Read                                                                                                                                                           |
| 4    | RESERVED      | R    | 0h    | Reserved                                                                                                                                                                                                                             |
| 3-1  | sqi_out       | R    | Oh    | 3 bit SQI - (mse here refers to Mean Square Error 0x875[9:0]) 0b000 = MSE > 102 0b001 = 81 < MSE ≤102 0b010 = 65 < MSE ≤ 81 0b011 = 51 < MSE ≤ 65 0b100 = 41 < MSE ≤ 51 0b101 = 32 < MSE ≤ 41 0b110 = 25 < MSE ≤ 32 0b111 = MSE ≤ 25 |
| 0    | RESERVED      | R    | 0h    | Reserved                                                                                                                                                                                                                             |




# 6.6.2.80 DSP\_REG\_74 Register (Offset = 874h) [Reset = 0000h]

DSP\_REG\_74 is shown in Figure 6-99 and described in Table 6-104.

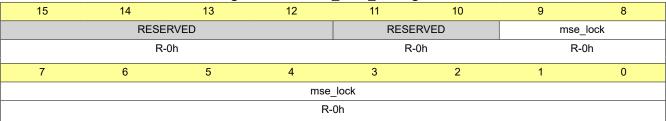
Return to the Summary Table.

# Figure 6-99. DSP\_REG\_74 Register



# Table 6-104. DSP\_REG\_74 Register Field Descriptions

| Bit  | Field              | Туре | Reset | Description                                                                                                                                                 |
|------|--------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-8 | worst_peak_mse_out | R    | 0h    | Worst peak mse out since last read as per TC12 (see peak mse mapping above) Cleared on Read                                                                 |
| 7-0  | peak_mse_out       | R    | 0h    | Peak mse as per TC12 - This value is 0.0625*averaged squared slicer error(max val = 0.015625). To get actual squared slicer error divide this value by 248. |




# 6.6.2.81 DSP\_REG\_75 Register (Offset = 875h) [Reset = 0000h]

DSP\_REG\_75 is shown in Figure 6-100 and described in Table 6-105.

Return to the Summary Table.

# Figure 6-100. DSP\_REG\_75 Register



# Table 6-105. DSP\_REG\_75 Register Field Descriptions

| Bit   | Field    | Туре | Reset | Description                                                                |
|-------|----------|------|-------|----------------------------------------------------------------------------|
| 15-12 | RESERVED | R    | 0h    | Reserved                                                                   |
| 11-10 | RESERVED | R    | 0h    | Reserved                                                                   |
| 9-0   | mse_lock | R    | 0h    | 10 bit mse used for SQI mapping. (mse = mean square error at the receiver) |

#### 6.6.2.82 PMA\_PMD\_CONTROL\_1 Register (Offset = 1000h) [Reset = 0000h]

PMA\_PMD\_CONTROL\_1 is shown in Figure 6-101 and described in Table 6-106.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-101. PMA\_PMD\_CONTROL\_1 Register

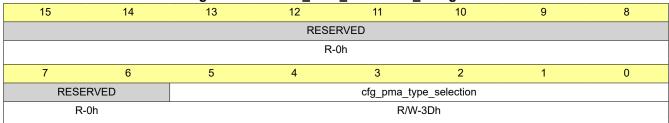
| 15          | 14       | 13 | 12 | 11       | 10       | 9 | 8 |
|-------------|----------|----|----|----------|----------|---|---|
| pma_reset_2 | RESERVED |    |    | RESERVED | RESERVED |   |   |
| R-0h        | R-0h     |    |    | R-0h     | R-0h     |   |   |
| 7           | 6        | 5  | 4  | 3        | 2        | 1 | 0 |
|             | RESERVED |    |    |          |          |   |   |
|             | R-0h     |    |    |          |          |   |   |

# Table 6-106. PMA\_PMD\_CONTROL\_1 Register Field Descriptions

| Bit   | Field       | Туре | Reset | Description                                                               |
|-------|-------------|------|-------|---------------------------------------------------------------------------|
| 15    | pma_reset_2 | R    |       | 1 = PMA/PMD reset<br>0 = Normal operation<br>Note - RW bit, self clearing |
| 14-12 | RESERVED    | R    | 0h    | Reserved                                                                  |
| 11    | RESERVED    | R    | 0h    | Reserved                                                                  |
| 10-0  | RESERVED    | R    | 0h    | Reserved                                                                  |

Product Folder Links: DP83TG720S-Q1

142


#### 6.6.2.83 PMA\_PMD\_CONTROL\_2 Register (Offset = 1007h) [Reset = 003Dh]

PMA\_PMD\_CONTROL\_2 is shown in Figure 6-102 and described in Table 6-107.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-102. PMA\_PMD\_CONTROL\_2 Register



# Table 6-107. PMA\_PMD\_CONTROL\_2 Register Field Descriptions

| Bit  | Field                  | Туре | Reset | Description                                                                  |
|------|------------------------|------|-------|------------------------------------------------------------------------------|
| 15-6 | RESERVED               | R    | 0h    | Reserved                                                                     |
| 5-0  | cfg_pma_type_selection | R/W  | 3Dh   | BASE-T1 type selection for device<br>3Dh = BASE-T1 type selection for device |



#### 6.6.2.84 PMA\_PMD\_TRANSMIT\_DISABLE Register (Offset = 1009h) [Reset = 0000h]

PMA\_PMD\_TRANSMIT\_DISABLE is shown in Figure 6-103 and described in Table 6-108.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-103. PMA\_PMD\_TRANSMIT\_DISABLE Register

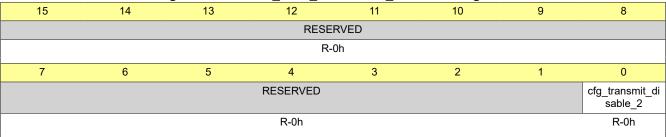
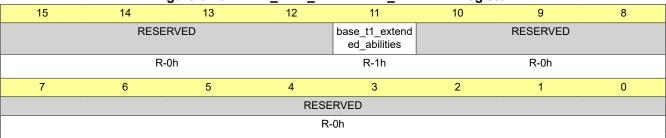



Table 6-108. PMA\_PMD\_TRANSMIT\_DISABLE Register Field Descriptions

| Bit  | Field                  | Туре | Reset | Description                                                   |
|------|------------------------|------|-------|---------------------------------------------------------------|
| 15-1 | RESERVED               | R    | 0h    | Reserved                                                      |
| 0    | cfg_transmit_disable_2 | R    |       | 1 = Transmit disable<br>0 = Normal operation<br>Note - RW bit |


# 6.6.2.85 PMA\_PMD\_EXTENDED\_ABILITY2 Register (Offset = 100Bh) [Reset = 0800h]

PMA\_PMD\_EXTENDED\_ABILITY2 is shown in Figure 6-104 and described in Table 6-109.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-104. PMA\_PMD\_EXTENDED\_ABILITY2 Register



# Table 6-109. PMA\_PMD\_EXTENDED\_ABILITY2 Register Field Descriptions

| Bit   | Field                       | Туре | Reset | Description                                                                                                             |
|-------|-----------------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 15-12 | RESERVED                    | R    | 0h    | Reserved                                                                                                                |
| 11    | base_t1_extended_abilitie s | R    | 1h    | 1 = PMA/PMD has BASE-T1 extended abilities listed in register 1.18 0 = PMA/PMD does not have BASE-T1 extended abilities |
| 10-0  | RESERVED                    | R    | 0h    | Reserved                                                                                                                |



# 6.6.2.86 PMA\_PMD\_EXTENDED\_ABILITY Register (Offset = 1012h) [Reset = 0002h]

PMA\_PMD\_EXTENDED\_ABILITY is shown in Figure 6-105 and described in Table 6-110.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-105. PMA\_PMD\_EXTENDED\_ABILITY Register

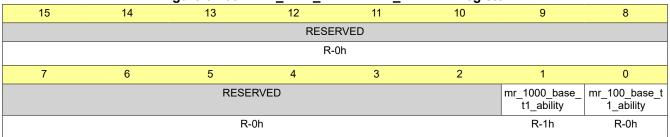



Table 6-110. PMA\_PMD\_EXTENDED\_ABILITY Register Field Descriptions

| Bit  | Field                   | Туре | Reset | Description                                                                                  |
|------|-------------------------|------|-------|----------------------------------------------------------------------------------------------|
| 15-2 | RESERVED                | R    | 0h    | Reserved                                                                                     |
| 1    | mr_1000_base_t1_ability | R    | 1h    | 1 = PMA/PMD is able to perform 1000BASE-T1<br>0 = PMA/PMD is not able to perform 1000BASE-T1 |
| 0    | mr_100_base_t1_ability  | R    | 0h    | 1 = PMA/PMD is able to perform 100BASE-T1<br>0 = PMA/PMD is not able to perform 100BASE-T1   |

# 6.6.2.87 PMA\_PMD\_CONTROL Register (Offset = 1834h) [Reset = 8001h]

PMA\_PMD\_CONTROL is shown in Figure 6-106 and described in Table 6-111.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-106. PMA\_PMD\_CONTROL Register

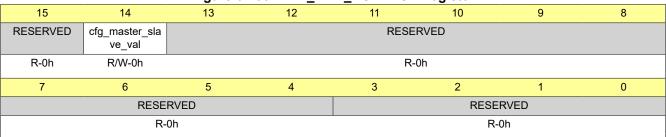



Table 6-111. PMA\_PMD\_CONTROL Register Field Descriptions

| Bit  | Field                | Туре | Reset | Description                                               |
|------|----------------------|------|-------|-----------------------------------------------------------|
| 15   | RESERVED             | R    | 0h    | Reserved                                                  |
| 14   | cfg_master_slave_val | R/W  | 0h    | 1 = Configure PHY as MASTER<br>0 = Configure PHY as SLAVE |
| 13-4 | RESERVED             | R    | 0h    | Reserved                                                  |
| 3-0  | RESERVED             | R    | 0h    | Reserved                                                  |

# 6.6.2.88 PMA\_CONTROL Register (Offset = 1900h) [Reset = 0000h]

PMA\_CONTROL is shown in Figure 6-107 and described in Table 6-112.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

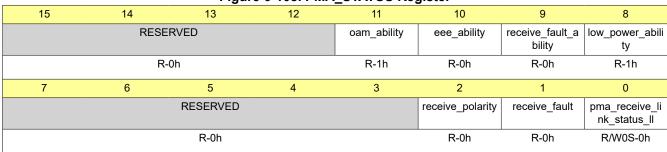
Figure 6-107. PMA CONTROL Register

|           |                          | 9        |    |          | g.0.0. |          |   |  |
|-----------|--------------------------|----------|----|----------|--------|----------|---|--|
| 15        | 14                       | 13       | 12 | 11       | 10     | 9        | 8 |  |
| pma_reset | cfg_transmit_di<br>sable | RESERVED |    | RESERVED |        | RESERVED |   |  |
| R-0h      | R-0h                     | R-0h     |    | R-0h     |        | R-0h     |   |  |
| 7         | 6                        | 5        | 4  | 3        | 2      | 1        | 0 |  |
| RESERVED  |                          |          |    |          |        |          |   |  |
|           | R-0h                     |          |    |          |        |          |   |  |
| ĺ         |                          |          |    |          |        |          |   |  |

# Table 6-112. PMA\_CONTROL Register Field Descriptions

|       | Table 6 112.1 IIIA_661111Cla Bescriptions |      |       |                                                                           |  |  |  |  |
|-------|-------------------------------------------|------|-------|---------------------------------------------------------------------------|--|--|--|--|
| Bit   | Field                                     | Туре | Reset | Description                                                               |  |  |  |  |
| 15    | pma_reset                                 | R    | Oh    | 1 = PMA/PMD reset<br>0 = Normal operation<br>Note - RW bit, self clearing |  |  |  |  |
| 14    | cfg_transmit_disable                      | R    | Oh    | 1 = Transmit disable<br>0 = Normal operation<br>Note - RW bit             |  |  |  |  |
| 13-12 | RESERVED                                  | R    | 0h    | Reserved                                                                  |  |  |  |  |
| 11    | RESERVED                                  | R    | 0h    | Reserved                                                                  |  |  |  |  |
| 10-0  | RESERVED                                  | R    | 0h    | Reserved                                                                  |  |  |  |  |




# 6.6.2.89 PMA\_STATUS Register (Offset = 1901h) [Reset = 0900h]

PMA\_STATUS is shown in Figure 6-108 and described in Table 6-113.

Return to the Summary Table.

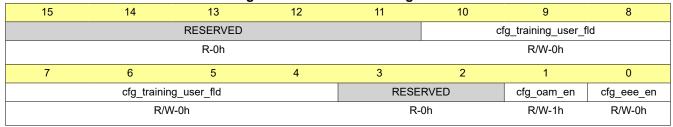
First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-108. PMA\_STATUS Register



# Table 6-113. PMA\_STATUS Register Field Descriptions

| Bit   | Field                     | Туре  | Reset | Description                                                                                                                                                       |
|-------|---------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-12 | RESERVED                  | R     | 0h    | Reserved                                                                                                                                                          |
| 11    | oam_ability               | R     | 1h    | 1 = PHY has 1000BASE-T1 OAM ability<br>0 = PHY does not have 1000BASE-T1 OAM ability                                                                              |
| 10    | eee_ability               | R     | 0h    | 1 = PHY has EEE ability<br>0 = PHY does not have EEE ability                                                                                                      |
| 9     | receive_fault_ability     | R     | Oh    | 1 = PMA/PMD has the ability to detect a fault condition on the receive path 0 = PMA/PMD does not have the ability to detect a fault condition on the receive path |
| 8     | low_power_ability         | R     | 1h    | 1 = PMA/PMD has low-power ability<br>0 = PMA/PMD does not have low-power ability                                                                                  |
| 7-3   | RESERVED                  | R     | 0h    | Reserved                                                                                                                                                          |
| 2     | receive_polarity          | R     | 0h    | 1 = Receive polarity is reversed<br>0 = Receive polarity is not reversed                                                                                          |
| 1     | receive_fault             | R     | 0h    | 1 = Fault condition detected<br>0 = Fault condition not detected                                                                                                  |
| 0     | pma_receive_link_status_l | R/W0S | 0h    | 1 = PMA/PMD receive link up<br>0 = PMA/PMD receive link down                                                                                                      |


# 6.6.2.90 TRAINING Register (Offset = 1902h) [Reset = 0002h]

TRAINING is shown in Figure 6-109 and described in Table 6-114.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-109. TRAINING Register



**Table 6-114. TRAINING Register Field Descriptions** 

| Bit   | Field                 | Туре | Reset | Description                                                                                                          |  |
|-------|-----------------------|------|-------|----------------------------------------------------------------------------------------------------------------------|--|
| 15-11 | RESERVED              | R    | 0h    | Reserved                                                                                                             |  |
| 10-4  | cfg_training_user_fld | R/W  | 0h    | 7-bit user defined field to send to the link partner                                                                 |  |
| 3-2   | RESERVED              | R    | 0h    | Reserved                                                                                                             |  |
| 1     | cfg_oam_en            | R/W  | 1h    | 1 = 1000BASE-T1 OAM ability advertised to link partner<br>0 = 1000BASE-T1 OAM ability not advertised to link partner |  |
| 0     | cfg_eee_en            | R/W  | 0h    | 1 = EEE ability advertised to link partner<br>0 = EEE ability not advertised to link partner                         |  |

# 6.6.2.91 LP\_TRAINING Register (Offset = 1903h) [Reset = 0000h]

LP\_TRAINING is shown in Figure 6-110 and described in Table 6-115.

Return to the Summary Table.

First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-110. LP\_TRAINING Register

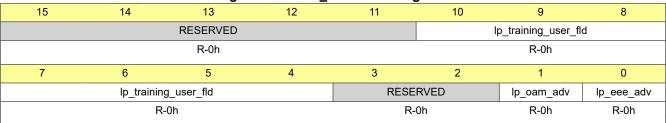



Table 6-115. LP\_TRAINING Register Field Descriptions

| Bit   | Field                | Туре | Reset | Description                                                                                            |
|-------|----------------------|------|-------|--------------------------------------------------------------------------------------------------------|
| 15-11 | RESERVED             | R    | 0h    | Reserved                                                                                               |
| 10-4  | lp_training_user_fld | R    | 0h    | 7-bit user defined field received from the link partner                                                |
| 3-2   | RESERVED             | R    | 0h    | Reserved                                                                                               |
| 1     | lp_oam_adv           | R    | 0h    | 1 = Link partner has 1000BASE-T1 OAM ability<br>0 = Link partner does not have 1000BASE-T1 OAM ability |
| 0     | lp_eee_adv           | R    | 0h    | Link partner has EEE ability     Link partner does not have EEE ability                                |


# 6.6.2.92 TEST\_MODE\_CONTROL Register (Offset = 1904h) [Reset = 0000h]

TEST\_MODE\_CONTROL is shown in Figure 6-111 and described in Table 6-116.

Return to the Summary Table.

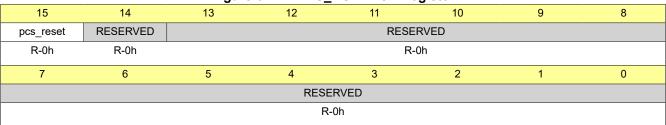
First nibble (0x1) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-111. TEST\_MODE\_CONTROL Register



# Table 6-116. TEST\_MODE\_CONTROL Register Field Descriptions

| _ | idadio o i i o i i o i i o i i o i o i o i |               |      |       |                                                                                                                                                                                   |  |  |  |
|---|--------------------------------------------|---------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | Bit                                        | Field         | Туре | Reset | Description                                                                                                                                                                       |  |  |  |
|   | 15-13                                      | cfg_test_mode | R/W  | 0h    | 111 = Test mode 7<br>110 = Test mode 6<br>101 = Test mode 5<br>100 = Test mode 4<br>011 = Reserved<br>010 = Test mode 2<br>001 = Test mode 1<br>000 = Normal (non-test) operation |  |  |  |
|   | 12-0                                       | RESERVED      | R    | 0h    | Reserved                                                                                                                                                                          |  |  |  |


# 6.6.2.93 PCS\_CONTROL Register (Offset = 3900h) [Reset = 0000h]

PCS\_CONTROL is shown in Figure 6-112 and described in Table 6-117.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-112. PCS\_CONTROL Register



# Table 6-117. PCS\_CONTROL Register Field Descriptions

| Bit  | Field     | Туре | Reset | Description                                                        |
|------|-----------|------|-------|--------------------------------------------------------------------|
| 15   | pcs_reset | R    |       | Note - RW bit, self clear bit 0h = Normal operation 1h = PCS reset |
| 14   | RESERVED  | R    | 0h    | Reserved                                                           |
| 13-0 | RESERVED  | R    | 0h    | Reserved                                                           |

# 6.6.2.94 PCS\_STATUS Register (Offset = 3901h) [Reset = 0000h]

PCS\_STATUS is shown in Figure 6-113 and described in Table 6-118.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-113. PCS\_STATUS Register

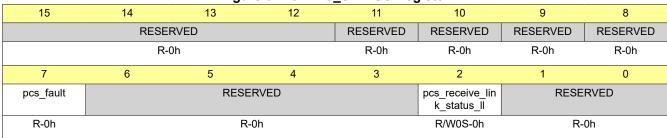
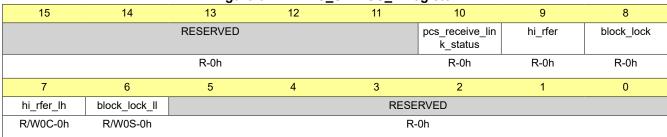



Table 6-118. PCS\_STATUS Register Field Descriptions

| Bit   | Field                      | Туре  | Reset | Description                                                       |
|-------|----------------------------|-------|-------|-------------------------------------------------------------------|
| 15-12 | RESERVED                   | R     | 0h    | Reserved                                                          |
| 11    | RESERVED                   | R     | 0h    | Reserved                                                          |
| 10    | RESERVED                   | R     | 0h    | Reserved                                                          |
| 9     | RESERVED                   | R     | 0h    | Reserved                                                          |
| 8     | RESERVED                   | R     | 0h    | Reserved                                                          |
| 7     | pcs_fault                  | R     | 0h    | 0h = No fault condition detected<br>1h = Fault condition detected |
| 6-3   | RESERVED                   | R     | 0h    | Reserved                                                          |
| 2     | pcs_receive_link_status_ll | R/W0S | 0h    | 0h = PCS receive link down<br>1h = PCS receive link up            |
| 1-0   | RESERVED                   | R     | 0h    | Reserved                                                          |


# 6.6.2.95 PCS\_STATUS\_2 Register (Offset = 3902h) [Reset = 0000h]

PCS\_STATUS\_2 is shown in Figure 6-114 and described in Table 6-119.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

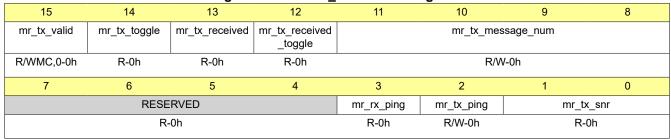
Figure 6-114. PCS\_STATUS\_2 Register



# Table 6-119. PCS\_STATUS\_2 Register Field Descriptions

| Bit   | Field                   | Туре  | Reset | Description                                                                  |
|-------|-------------------------|-------|-------|------------------------------------------------------------------------------|
| 15-11 | RESERVED                | R     | 0h    | Reserved                                                                     |
| 10    | pcs_receive_link_status | R     | 0h    | 0h = PCS receive link down<br>1h = PCS receive link up                       |
| 9     | hi_rfer                 | R     | 0h    | 0h = PCS not reporting a high BER<br>1h = PCS reporting a high BER           |
| 8     | block_lock              | R     | 0h    | 0h = PCS not locked to received blocks<br>1h = PCS locked to received blocks |
| 7     | hi_rfer_lh              | R/W0C | 0h    | 0h = PCS has not reported a high BER<br>1h = PCS has reported a high BER     |
| 6     | block_lock_ll           | R/W0S | 0h    | 0h = PCS does not have block lock<br>1h = PCS has block lock                 |
| 5-0   | RESERVED                | R     | 0h    | Reserved                                                                     |




# 6.6.2.96 OAM\_TRANSMIT Register (Offset = 3904h) [Reset = 0000h]

OAM\_TRANSMIT is shown in Figure 6-115 and described in Table 6-120.

Return to the Summary Table.

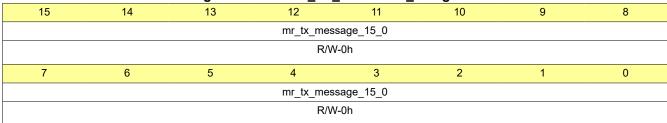
First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

### Figure 6-115. OAM\_TRANSMIT Register



### Table 6-120. OAM TRANSMIT Register Field Descriptions

| Bit  | Field                 | Туре    | Reset | Description                                                                                                                                                                                                                                                                                                          |
|------|-----------------------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15   | mr_tx_valid           | R/WMC,0 | Oh    | This bit is used to indicate message data in registers 3.2308.11:8, 3.2309, 3.2310, 3.2311, and 3.2312 are valid and ready to be loaded. This bit shall self-clear when registers are loaded by the state machine.  1 = Message data in registers are valid 0 = Message data in registers are not valid              |
| 14   | mr_tx_toggle          | R       | 0h    | Toggle value to be transmitted with message. This bit is set by the state machine and cannot be overridden by the user.                                                                                                                                                                                              |
| 13   | mr_tx_received        | R       | 0h    | This bit shall self clear on read.  1 = 1000BASE-T1 OAM message received by link partner  0 = 1000BASE-T1 OAM message not received by link partner                                                                                                                                                                   |
| 12   | mr_tx_received_toggle | R       | 0h    | Toggle value of message that was received by link partner                                                                                                                                                                                                                                                            |
| 11-8 | mr_tx_message_num     | R/W     | 0h    | User-defined message number to send                                                                                                                                                                                                                                                                                  |
| 7-4  | RESERVED              | R       | 0h    | Reserved                                                                                                                                                                                                                                                                                                             |
| 3    | mr_rx_ping            | R       | 0h    | Received PingTx value from latest good 1000BASE-T1 OAM frame received                                                                                                                                                                                                                                                |
| 2    | mr_tx_ping            | R/W     | 0h    | Ping value to send to link partner                                                                                                                                                                                                                                                                                   |
| 1-0  | mr_tx_snr             | R       | Oh    | 00 = PHY link is failing and shall drop link and relink within 2ms to 4ms after the end of the current 1000BASE-T1 OAM frame. 01 = LPI refresh is insufficient to maintain PHY SNR. Request link partner to exit LPI and send idles (used only when EEE is enabled). 10 = PHY SNR is marginal. 11 = PHY SNR is good. |


# 6.6.2.97 OAM\_TX\_MESSAGE\_1 Register (Offset = 3905h) [Reset = 0000h]

OAM\_TX\_MESSAGE\_1 is shown in Figure 6-116 and described in Table 6-121.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-116. OAM\_TX\_MESSAGE\_1 Register



# Table 6-121. OAM\_TX\_MESSAGE\_1 Register Field Descriptions

| Bit  | Field              | Туре | Reset | Description                               |
|------|--------------------|------|-------|-------------------------------------------|
| 15-0 | mr_tx_message_15_0 | R/W  | 0h    | Message octet 1/0. LSB transmitted first. |



# 6.6.2.98 OAM\_TX\_MESSAGE\_2 Register (Offset = 3906h) [Reset = 0000h]

OAM\_TX\_MESSAGE\_2 is shown in Figure 6-117 and described in Table 6-122.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-117. OAM\_TX\_MESSAGE\_2 Register

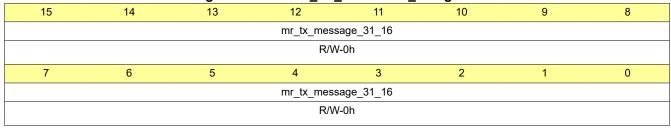
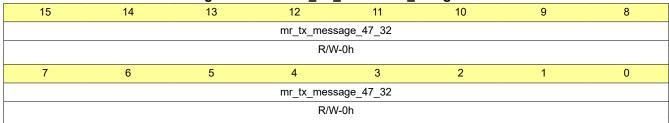



Table 6-122. OAM\_TX\_MESSAGE\_2 Register Field Descriptions

| Bit  | Field               | Туре | Reset | Description                               |
|------|---------------------|------|-------|-------------------------------------------|
| 15-0 | mr_tx_message_31_16 | R/W  | 0h    | Message octet 3/2. LSB transmitted first. |


# 6.6.2.99 OAM\_TX\_MESSAGE\_3 Register (Offset = 3907h) [Reset = 0000h]

OAM\_TX\_MESSAGE\_3 is shown in Figure 6-118 and described in Table 6-123.

Return to the Summary Table.

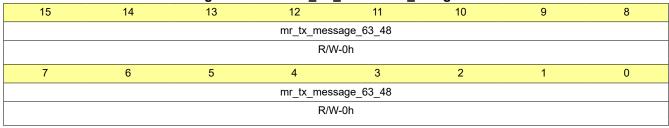
First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-118. OAM\_TX\_MESSAGE\_3 Register



# Table 6-123. OAM\_TX\_MESSAGE\_3 Register Field Descriptions

| Bit  | Field               | Туре | Reset | Description                               |
|------|---------------------|------|-------|-------------------------------------------|
| 15-0 | mr_tx_message_47_32 | R/W  | 0h    | Message octet 5/4. LSB transmitted first. |


# 6.6.2.100 OAM\_TX\_MESSAGE\_4 Register (Offset = 3908h) [Reset = 0000h]

OAM\_TX\_MESSAGE\_4 is shown in Figure 6-119 and described in Table 6-124.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-119. OAM\_TX\_MESSAGE\_4 Register



# Table 6-124. OAM\_TX\_MESSAGE\_4 Register Field Descriptions

| Bit  | Field               | Туре | Reset | Description                               |
|------|---------------------|------|-------|-------------------------------------------|
| 15-0 | mr_tx_message_63_48 | R/W  | 0h    | Message octet 7/6. LSB transmitted first. |

Submit Document Feedback

# 6.6.2.101 OAM\_RECEIVE Register (Offset = 3909h) [Reset = 0000h]

OAM\_RECEIVE is shown in Figure 6-120 and described in Table 6-125.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-120. OAM\_RECEIVE Register

| 15             | 14              | 13   | 12   | 11                   | 10 | 9       | 8     |  |
|----------------|-----------------|------|------|----------------------|----|---------|-------|--|
| mr_rx_lp_valid | mr_rx_lp_toggle | RESE | RVED | mr_rx_lp_message_num |    |         |       |  |
| R-0h           | R-0h            | R    | -0h  | R-0h                 |    |         |       |  |
| 7              | 6               | 5    | 4    | 3                    | 2  | 1       | 0     |  |
|                |                 | RESE | RVED |                      |    | mr_rx_l | p_SNR |  |
|                |                 | R    | -0h  |                      |    | R-      | 0h    |  |

# Table 6-125. OAM\_RECEIVE Register Field Descriptions

| Bit   | Field                | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | mr_rx_lp_valid       | R    | 0h    | This bit is used to indicate message data in registers 3.2313.11:8, 3.2314, 3.2315, 3.2316, and 3.2317 are stored and ready to be read. This bit shall self clear when register 3.2317 is read. 0h = Message data in registers are not valid 1h = Message data in registers are valid                                                                                 |
| 14    | mr_rx_lp_toggle      | R    | 0h    | Toggle value received with message Note - 0x3 added in [15:12] to differentiate                                                                                                                                                                                                                                                                                       |
| 13-12 | RESERVED             | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                                              |
| 11-8  | mr_rx_lp_message_num | R    | 0h    | Message number from link partner Note - 0x3 added in [15:12] to differentiate                                                                                                                                                                                                                                                                                         |
| 7-2   | RESERVED             | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                                              |
| 1-0   | mr_rx_lp_SNR         | R    | 0h    | 00 = Link partner link is failing and shall drop link and relink within 2ms to 4ms after the end of the current 1000BASE-T1 OAM frame. 01 = LPI refresh is insufficient to maintain link partner SNR. Link partner requests local device to exit LPI and send idles (used only when EEE is enabled). 10 = Link partner SNR is marginal. 11 = Link partner SNR is good |

# 6.6.2.102 OAM\_RX\_MESSAGE\_1 Register (Offset = 390Ah) [Reset = 0000h]

OAM\_RX\_MESSAGE\_1 is shown in Figure 6-121 and described in Table 6-126.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-121. OAM\_RX\_MESSAGE\_1 Register

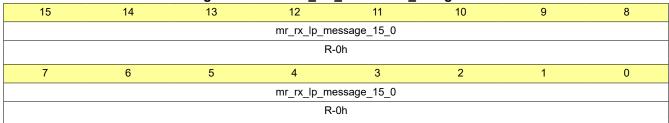
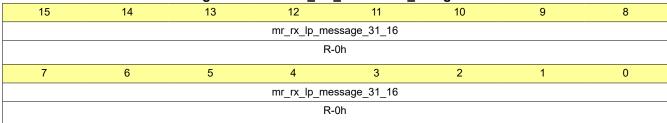



Table 6-126. OAM\_RX\_MESSAGE\_1 Register Field Descriptions

| Bit  | Field                 | Туре | Reset | Description                               |
|------|-----------------------|------|-------|-------------------------------------------|
| 15-0 | mr_rx_lp_message_15_0 | R    | 0h    | Message octet 1/0. LSB transmitted first. |


# 6.6.2.103 OAM\_RX\_MESSAGE\_2 Register (Offset = 390Bh) [Reset = 0000h]

OAM\_RX\_MESSAGE\_2 is shown in Figure 6-122 and described in Table 6-127.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-122. OAM\_RX\_MESSAGE\_2 Register



# Table 6-127. OAM\_RX\_MESSAGE\_2 Register Field Descriptions

| Bit  | Field                  | Туре | Reset | Description                               |
|------|------------------------|------|-------|-------------------------------------------|
| 15-0 | mr_rx_lp_message_31_16 | R    | 0h    | Message octet 3/2. LSB transmitted first. |

# 6.6.2.104 OAM\_RX\_MESSAGE\_3 Register (Offset = 390Ch) [Reset = 0000h]

OAM\_RX\_MESSAGE\_3 is shown in Figure 6-123 and described in Table 6-128.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-123. OAM\_RX\_MESSAGE\_3 Register

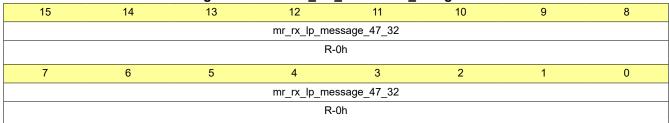
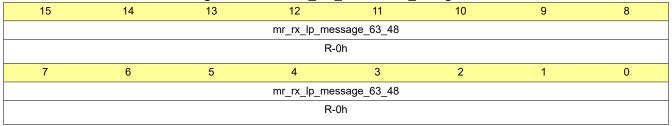



Table 6-128. OAM\_RX\_MESSAGE\_3 Register Field Descriptions

| Bit  | Field                  | Туре | Reset | Description                               |
|------|------------------------|------|-------|-------------------------------------------|
| 15-0 | mr_rx_lp_message_47_32 | R    | 0h    | Message octet 5/4. LSB transmitted first. |


# 6.6.2.105 OAM\_RX\_MESSAGE\_4 Register (Offset = 390Dh) [Reset = 0000h]

OAM\_RX\_MESSAGE\_4 is shown in Figure 6-124 and described in Table 6-129.

Return to the Summary Table.

First nibble (0x3) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-124. OAM\_RX\_MESSAGE\_4 Register



# Table 6-129. OAM\_RX\_MESSAGE\_4 Register Field Descriptions

| Bit  | Field                  | Туре | Reset | Description                               |
|------|------------------------|------|-------|-------------------------------------------|
| 15-0 | mr_rx_lp_message_63_48 | R    | 0h    | Message octet 7/6. LSB transmitted first. |

# 6.6.2.106 AN\_CFG Register (Offset = 7200h) [Reset = 0000h]

AN\_CFG is shown in Figure 6-125 and described in Table 6-130.

Return to the Summary Table.

First nibble (0x7) in the register address is to indicate MMD register space. For register access, ignore the first nibble.

Figure 6-125. AN\_CFG Register

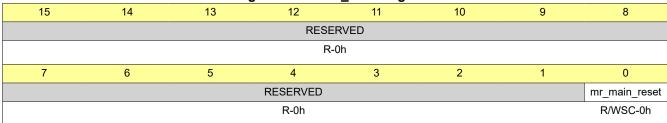



Table 6-130. AN\_CFG Register Field Descriptions

| Bit  | Field         | Туре  | Reset | Description                                  |
|------|---------------|-------|-------|----------------------------------------------|
| 15-1 | RESERVED      | R     | 0h    | Reserved                                     |
| 0    | mr_main_reset | R/WSC | 0h    | 1 = Reset link sync/autoneg<br>Note - RW bit |

# 7 Application and Implementation

### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

# 7.1 Application Information

The DP83TG720S-Q1 is a single-port 1-Gbps Automotive Ethernet PHY. It supports IEEE 802.3bp and allows for connections to an Ethernet MAC through RGMII or SGMII. When using the device for Ethernet applications, it is necessary to meet certain requirements for normal operation. The following subsections are intended to assist in appropriate component selection and required connections.

# 7.2 Typical Applications

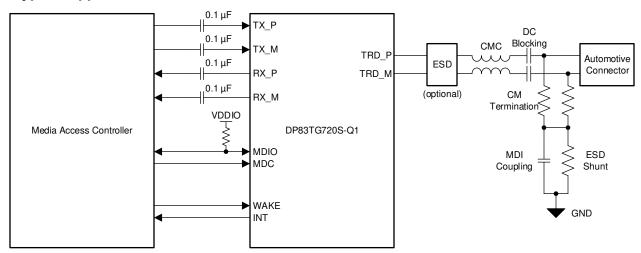



Figure 7-1. Typical Application (SGMII)

| Design Parameter                      | Value                 |
|---------------------------------------|-----------------------|
| DC Blocking Capacitors 1              | 0.1µF                 |
| Common-Mode Choke                     | Murata :DLW32MH101XT2 |
| Common Mode Termination Resistors 1 2 | 1kΩ                   |
| MDI Coupling Capacitor                | 4.7nF                 |

 $100 k \Omega$ 

Table 7-1. Recommended Components for MDI Network

- 1. 1% tolerance components are recommended for margins over spec of return loss and mode conversion.
- 2. CM termination resistor's size higher than 0805 helps in increasing ESD margin.

### 7.3 Power Supply Recommendations

**ESD Shunt** 

The DP83TG720S-Q1 is capable of operating with a wide range of IO supply voltages (3.3V, 2.5V, or 1.8V). No power supply sequencing is required. The recommended power supply de-coupling network is shown in following figure:



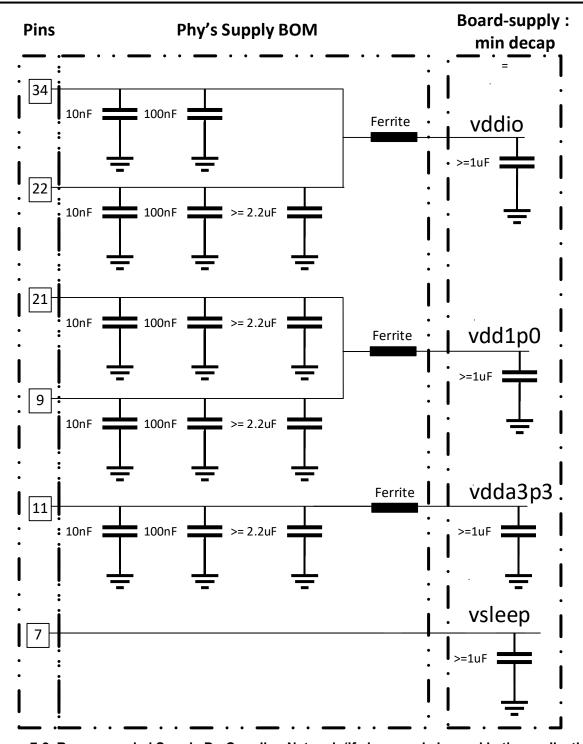



Figure 7-2. Recommended Supply De-Coupling Network (if sleep mode is used in the application)

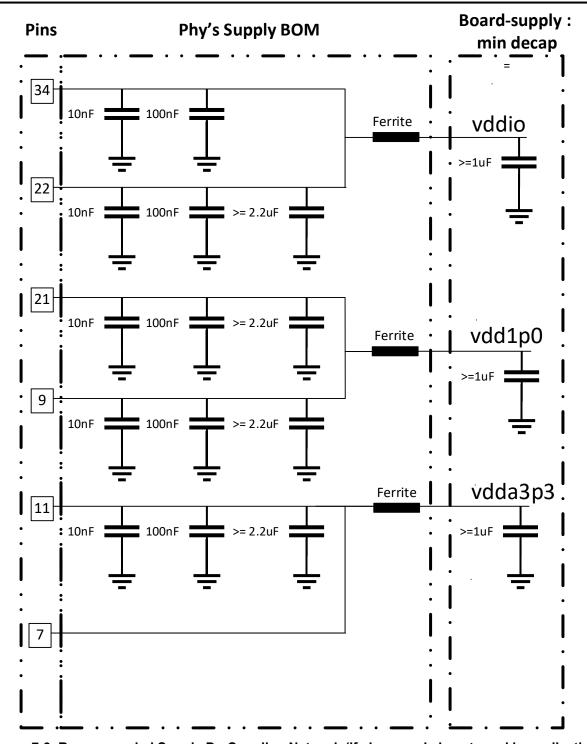



Figure 7-3. Recommended Supply De-Coupling Network (if sleep mode is not used in application)

**Table 7-2. Recommended Components for Power Network** 

| ruble 7 2. Recommended components for 1 ower Network |                     |  |  |  |  |  |
|------------------------------------------------------|---------------------|--|--|--|--|--|
| Design Parameter                                     | Value               |  |  |  |  |  |
| V <sub>DDIO</sub>                                    | 1.8V, 2.5V, or 3.3V |  |  |  |  |  |
| De-Coupling Capacitors V <sub>DDIO</sub> (pin 34)    | 10nF, 100nF         |  |  |  |  |  |
| De-Coupling Capacitors V <sub>DDIO</sub> (pin 22)    | 10nF, 100nF, 2.2uF  |  |  |  |  |  |
| Combined Ferrite Bead for VDDIO                      | BLM18HE102SN1       |  |  |  |  |  |



Table 7-2. Recommended Components for Power Network (continued)

| Design Parameter                                  | Value              |  |  |  |  |
|---------------------------------------------------|--------------------|--|--|--|--|
| $V_{DDA}$                                         | 3.3V               |  |  |  |  |
| De-Coupling Capacitors V <sub>DDA</sub> (pin 11)  | 10nF, 100nF, 2.2uF |  |  |  |  |
| Ferrite Bead for V <sub>DDA</sub>                 | BLM18KG601SH1      |  |  |  |  |
| $V_{DD1p0}$                                       | 1V                 |  |  |  |  |
| De-Coupling Capacitors V <sub>DD1P0</sub> (pin 9) | 10nF, 100nF, 2.2uF |  |  |  |  |
| De-Coupling Capacitors V <sub>DDA</sub> (pin 21)  | 10nF, 100nF, 2.2uF |  |  |  |  |
| Combined Ferrite Bead for V <sub>DD1P0</sub>      | BLM18KG601SH1      |  |  |  |  |
| V <sub>sleep</sub>                                | 3.3V               |  |  |  |  |

### Note

For recommendation on LDOs for VDD1p0 and Vsleep, please refer to the *DP83TC811*, *DP83TG730 Rollover Document* application report.

# 7.4 Compatibility with TI's 100BT1 PHY

Following table shows pin comparison between DP83TC811 and DP83TG720. Pins highlighted in bold need attention while designing a common board for both 100BT1 and 1000BT1 PHY. 100BT1 and 1000BT1 PHY's different BOM requirements can also be taken care by a common board.

Details and recommendation for common board design can be found in *DP83TC811*, *DP83TG720 Rollover Document* application report.

**Table 7-3. Pin Comparison Table** 

| Pin No. | DP83TC811 | DP83TG720 |  |  |
|---------|-----------|-----------|--|--|
| 1       | MDC       | MDC       |  |  |
| 2       | INT_N     | INT_N     |  |  |
| 3       | RESET_N   | RESET_N   |  |  |
| 4       | XO        | XO        |  |  |
| 5       | XI        | XI        |  |  |
| 6       | LED_1     | LED_1     |  |  |
| 7       | EN        | VSLEEP    |  |  |
| 8       | WAKE      | WAKE      |  |  |
| 9       | DNC       | VDD1P0    |  |  |
| 10      | INH       | INH       |  |  |
| 11      | VDDA      | VDDA      |  |  |
| 12      | TRD_P     | TRD_P     |  |  |
| 13      | TRD_M     | TRD_M     |  |  |
| 14      | RX_ER     | STRP1     |  |  |
| 15      | RX_DV     | RX_CTRL   |  |  |
| 16      | CLKOUT    | CLKOUT    |  |  |
| 17      | тск       | DNC       |  |  |
| 18      | TDO       | DNC       |  |  |
| 19      | TMS       | DNC       |  |  |
| 20      | тск       | DNC       |  |  |
| 21      | DNC       | VDD1P0    |  |  |
| 22      | VDDIO     | VDDIO     |  |  |
| 23      | RX_D3     | RX_D3     |  |  |
| 24      | RX_D2     | RX_D2     |  |  |

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

| Table 7-3. Pin Comparison Table (continued) |           |           |  |  |  |  |  |
|---------------------------------------------|-----------|-----------|--|--|--|--|--|
| Pin No.                                     | DP83TC811 | DP83TG720 |  |  |  |  |  |
| 25                                          | RX_D1     | RX_D1     |  |  |  |  |  |
| 26                                          | RX_D0     | RX_D0     |  |  |  |  |  |
| 27                                          | RX_CLK    | RX_CLK    |  |  |  |  |  |
| 28                                          | TXCLK     | TXCLK     |  |  |  |  |  |
| 29                                          | TX_EN     | TX_CTRL   |  |  |  |  |  |
| 30                                          | TX_D3     | TX_D3     |  |  |  |  |  |
| 31                                          | TX_D2     | TX_D2     |  |  |  |  |  |
| 32                                          | TX_D1     | TX_D1     |  |  |  |  |  |

TX D0

TX\_ER

LED 0

MDIO

TX D0

**VDDIO** 

LED 0

MDIO

# 7.5 Layout

# 7.5.1 Layout Guidelines

33 **34** 

35

36

### 7.5.1.1 Signal Traces

PCB traces are lossy and long traces can degrade signal quality. Traces must be kept short as possible. Unless mentioned otherwise, all signal traces must be  $50\Omega$ , single-ended impedance. Differential traces must be  $50\Omega$  single-ended and  $100\Omega$  differential. Impedance discontinuities cause reflections leading to emissions and signal integrity issues. Stubs must be avoided on all signal traces, especially differential signal pairs.



Figure 7-4. Differential Signal Trace Routing

Within the differential pairs, trace lengths must be run parallel to each other and matched in length. Matched lengths minimize delay differences, avoiding an increase in common mode noise and emissions. Length matching is also important for MAC interface connections. All transmit signal traces must be length matched to each other and all receive signal traces must be length matched to each other.

Avoid crossover or vias on signal path traces. Vias present impedance discontinuities and be minimized when possible. Route trace pairs on the same layer. Avoid signals on different layers crossing each other without at least one return path plane between them. Differential pairs must always have a constant coupling

distance between them. For convenience and efficiency, TI recommends routing critical signals first (that is, MDI differential pairs, reference clock, and MAC IF traces).

### 7.5.1.2 Return Path

A general best practice is to have a solid return path beneath all signal traces. This return path can be a continuous ground or DC power plane. Reducing the width of the return path can potentially affect the impedance of the signal trace. This effect is more prominent when the width of the return path is comparable to the width of the signal trace. Breaks in return path between the signal traces must be avoided. A signal crossing a split plane causes unpredictable return path currents and impacts signal quality and result in emissions issues.

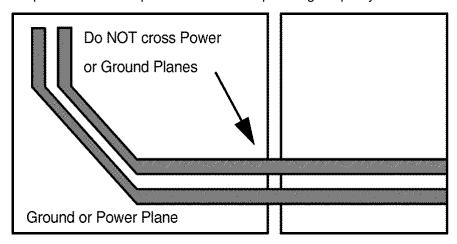



Figure 7-5. Power and Ground Plane Breaks

### 7.5.1.3 Physical Medium Attachment

There must be no metal running beneath the common-mode choke. CMCs can inject noise into metal beneath them, which can affect the emissions and immunity performance of the system. Because the DP83TG720S-Q1 is a voltage mode line driver, no external termination resistors are required. The ESD shunt and MDI coupling capacitor must be connected to ground. Select common mode termination resistors that are 1% tolerance or better to improve differential coupling.

### 7.5.1.4 Metal Pour

All metal pours that are not signals or power must be tied to ground. There must be no floating metal in the system, and there must be no metal between differential traces.

### 7.5.1.5 PCB Layer Stacking

To meet signal integrity and performance requirements, minimum four-layer PCB is recommended. However, a six-layer PCB and above should be used when possible.

Product Folder Links: DP83TG720S-Q1

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



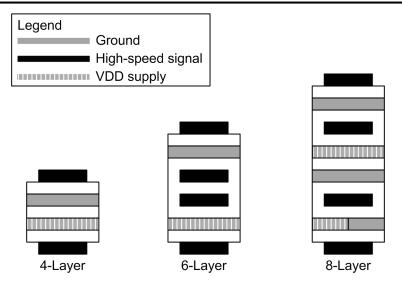



Figure 7-6. Recommended PCB Layer Stack-Up



# 8 Device and Documentation Support

### Note

TI is transitioning to use more inclusive terminology. Some language may be different than what you would expect to see for certain technology areas.

# 8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 8.2 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

### 8.3 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

# 8.4 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 8.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

# 9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision E (February 2022) to Revision F (April 2025)                                    |                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Changed the order of register 0x619 and 0x624 writes                                                  | 31              |  |  |  |  |
| Changed the parameter 'slope_temperature_sensor'                                                      | 34              |  |  |  |  |
| <ul> <li>Added a statement that Auto-Polarity Correction can't be disabled on DP83TG720-Q1</li> </ul> |                 |  |  |  |  |
| Simplified the description of Serial Management Interface for ease of readability                     | <mark>50</mark> |  |  |  |  |
| Changed LED_0 pin number from 1 to 35 in Table 7-18                                                   |                 |  |  |  |  |
| Removed unused register fields from the register map                                                  |                 |  |  |  |  |
|                                                                                                       |                 |  |  |  |  |

| С | anges from Revision D (March 2021) to Revision E (February 2022)PageUpdated the title of document |    |  |  |  |
|---|---------------------------------------------------------------------------------------------------|----|--|--|--|
|   |                                                                                                   |    |  |  |  |
| • | · · · · · · · · · · · · · · · · · · ·                                                             |    |  |  |  |
|   |                                                                                                   |    |  |  |  |
| • |                                                                                                   | 26 |  |  |  |



| Changed the 0x0016 register value to 0x0108, 0x0104, 0x0101 for analog loopback, digital loopback, and                                                         |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| PCS loopback                                                                                                                                                   |       |
| Updated the step of local and remote sleep entry                                                                                                               |       |
| Updated the CM resistor packaging recommendation 0805                                                                                                          | . 167 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                          | Page  |
| IOZ, 2 level boot-strap's Mode 2 threshold and Rpull-down min/max data sheet limits updated to give more                                                       |       |
| margin to customer application                                                                                                                                 |       |
| Min/Max values of rgmii DLL_TX_DELAY, sleep mode timing parameters, latency parameters, reset mode                                                             | е     |
| power, standby mode power and sleep mode power added                                                                                                           | 10    |
| Changed Integrated Pull-Down Resistance from 4.5kΩ to 4.725kΩ                                                                                                  | 10    |
| Correction in registers to be used for enabling sleep mode entry                                                                                               |       |
| Further details added to remote sleep exit procedure                                                                                                           |       |
| Note added for more margins for 1.8V two level straps                                                                                                          |       |
| Changes from Revision B (February 2021) to Revision C (February 2021)                                                                                          | Page  |
| Updated the Pull-down resistor value of rx_cntrl and strp_1 pins in pin-state tables. Changed from 6 K to K to match exact value in the Specifications section |       |
| SQI section updated to meet OA requirements                                                                                                                    |       |
| Strap circuit diagram updated to remove external pull-down                                                                                                     |       |
| Changes from Revision A (December 2020) to Revision B (December 2020)                                                                                          | Page  |
| Updated Power Supply Recommendation Note                                                                                                                       | . 167 |
|                                                                                                                                                                |       |
| Changes from Revision * (September 2020) to Revision A (December 2020)                                                                                         |       |
|                                                                                                                                                                | Page  |



# 10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left navigation.

# 10.1 Package Option Addendum

### 10.1.1 Packaging Information

| Orderable Device      | Status (1)          | Packag<br>e Type | Packag<br>e<br>Drawing | Pins | Packag<br>e Qty | Eco Plan | Lead/Ball<br>Finish <sup>(4)</sup> | MSL Peak<br>Temp <sup>(3)</sup> | Op Temp<br>(°C) | Device Marking <sup>(5) (6)</sup> |
|-----------------------|---------------------|------------------|------------------------|------|-----------------|----------|------------------------------------|---------------------------------|-----------------|-----------------------------------|
| PDP83TG720SWCST<br>Q1 | EARLY<br>SAMPL<br>E | VQFN             | RHA                    | 36   | 250             | RoHS     | NiPdAu                             | MSL3-260C                       | -40 to 125      |                                   |
| DP83TG720SWRHAT<br>Q1 | ACTIV<br>E          | VQFN             | RHA                    | 36   | 250             | RoHS     | NiPdAu                             | MSL3-260C                       | -40 to 125      | 720S                              |
| DP83TG720SWRHAR<br>Q1 | ACTIV<br>E          | VQFN             | RHA                    | 36   | 2500            | RoHS     | NiPdAu                             | MSL3-260C                       | -40 to 125      | 720S                              |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

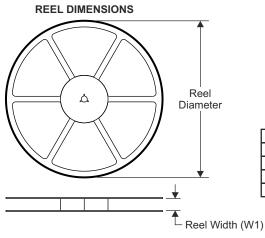
**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

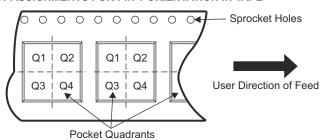
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Submit Document Feedback

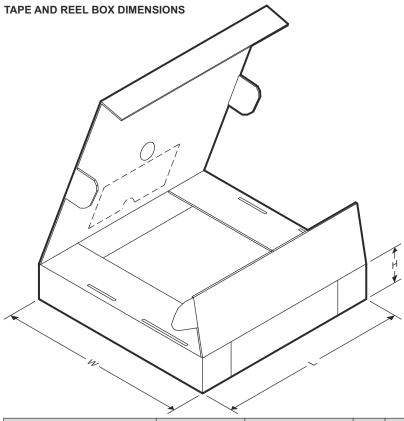
Copyright © 2025 Texas Instruments Incorporated




# 10.1.2 Tape and Reel Information



# TAPE DIMENSIONS KO P1 BO W Cavity AO


|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

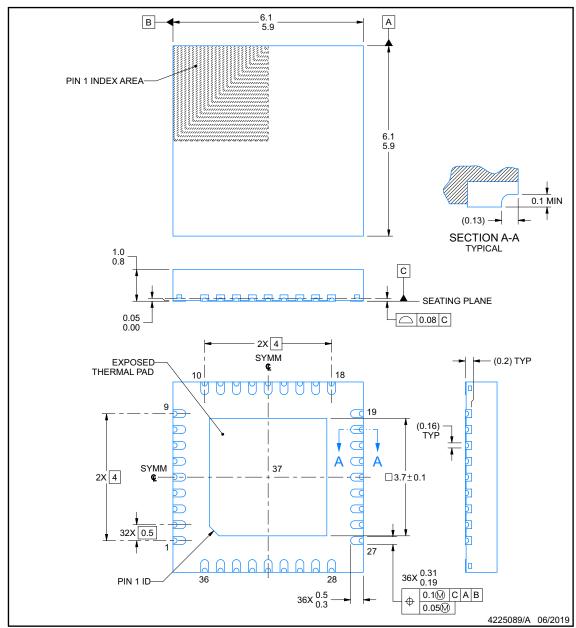


| Device                | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| PDP83TG720SWCSTQ<br>1 | VQFN            | RHA                | 36   | 250  | Call TI                  | Call TI                  | Call TI    | Call TI    | Call TI    | Call TI    | Call TI   | Call TI          |
| DP83TG720SWRHATQ<br>1 | VQFN            | RHA                | 36   | 250  | 180                      | 16.4                     | 6.3        | 6.3        | 1.1        | 12         | 16        | Q2               |
| DP83TG720SWRHARQ<br>1 | VQFN            | RHA                | 36   | 2500 | 330                      | 16.4                     | 6.3        | 6.3        | 1.1        | 12         | 16        | Q2               |





| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| DP83TG720SWRHATQ1 | VQFN         | RHA             | 36   | 250  | 210         | 185        | 35          |
| DP83TG720SWRHARQ1 | VQFN         | RHA             | 36   | 2500 | 367         | 367        | 35          |


# **RHA0036A**



# PACKAGE OUTLINE

# VQFN - 1 mm max height

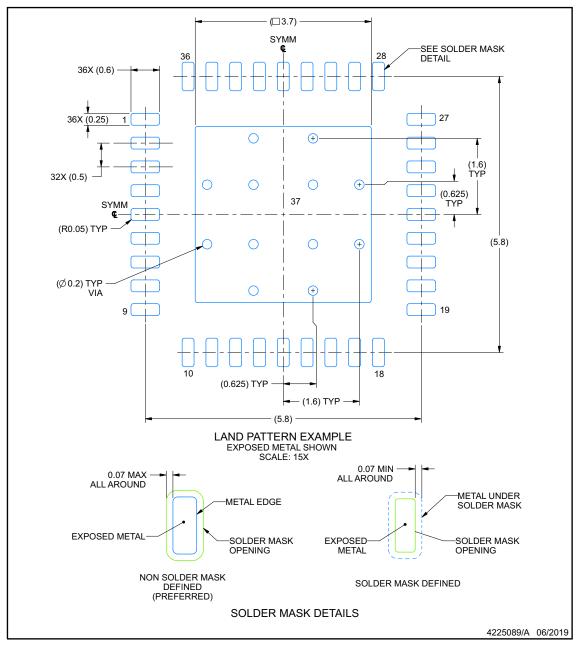
PLASTIC QUAD FLATPACK - NO LEAD



### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.
   The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.






# **EXAMPLE BOARD LAYOUT**

# **RHA0036A**

# VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



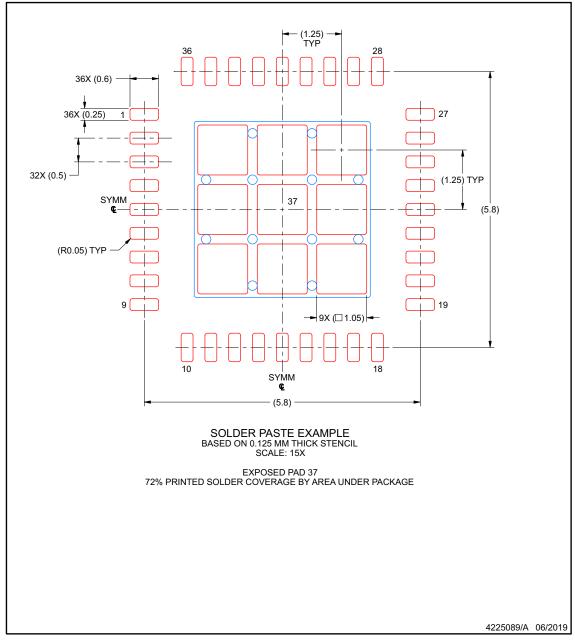
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated




# **EXAMPLE STENCIL DESIGN**

# **RHA0036A**

# VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



www.ti.com 14-Aug-2024

### PACKAGING INFORMATION

| Orderable Device  | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|-------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------|
| DP83TG720SWRHARQ1 | ACTIVE        | VQFN         | RHA                | 36   | 2500           | RoHS & Green | NIPDAU                        | Level-3-260C-168 HR | -40 to 125   | 720S                    | Samples |
| DP83TG720SWRHATQ1 | ACTIVE        | VQFN         | RHA                | 36   | 250            | RoHS & Green | NIPDAU                        | Level-3-260C-168 HR | -40 to 125   | 720S                    | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

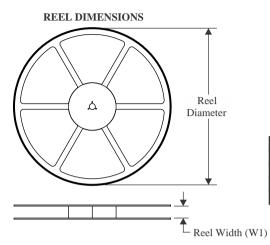
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

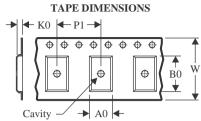
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




# **PACKAGE OPTION ADDENDUM**


www.ti.com 14-Aug-2024

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 3-Apr-2025

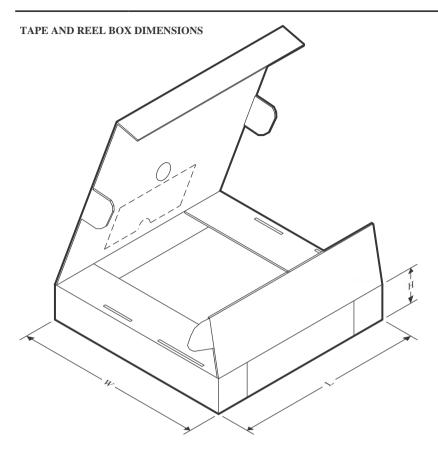
# TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



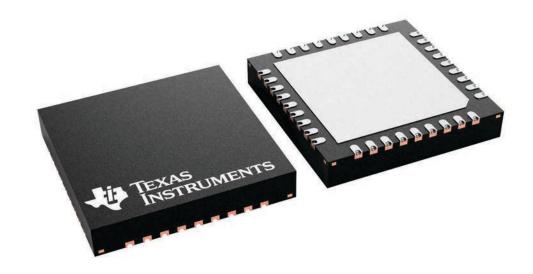

### \*All dimensions are nominal

| Device            | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| DP83TG720SWRHARQ1 | VQFN            | RHA                | 36 | 2500 | 330.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |
| DP83TG720SWRHATQ1 | VQFN            | RHA                | 36 | 250  | 180.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |

**PACKAGE MATERIALS INFORMATION** 

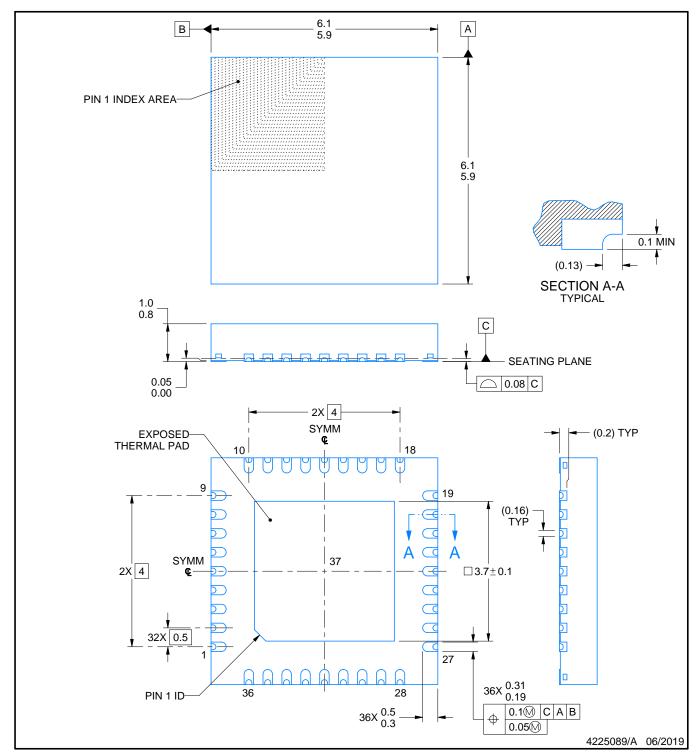
www.ti.com 3-Apr-2025




### \*All dimensions are nominal

| Device            | Device Package Type |     | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |  |
|-------------------|---------------------|-----|------|------|-------------|------------|-------------|--|
| DP83TG720SWRHARQ1 | VQFN                | RHA | 36   | 2500 | 367.0       | 367.0      | 35.0        |  |
| DP83TG720SWRHATQ1 | VQFN                | RHA | 36   | 250  | 210.0       | 185.0      | 35.0        |  |

6 x 6, 0.5 mm pitch

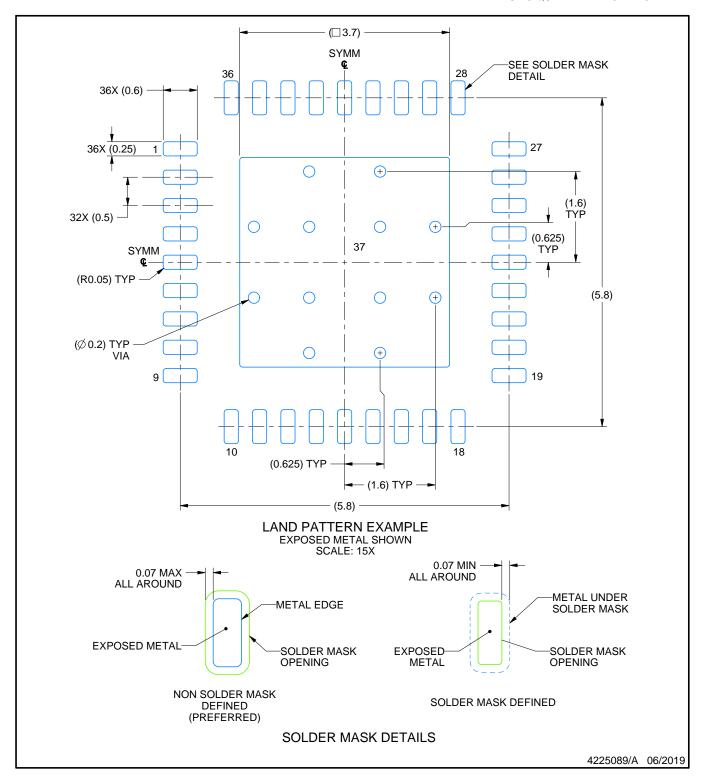

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.





PLASTIC QUAD FLATPACK - NO LEAD

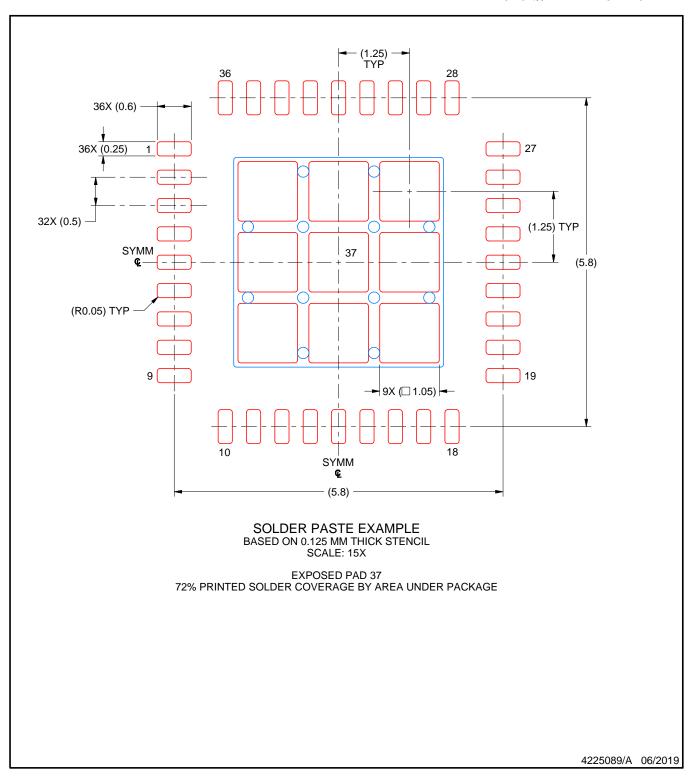



### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
  2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated