

ISD ChipCorder® ISD18B00 Series DataSheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of Audio Product Line based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation. www.nuvoton.com

TABLE OF CONTENTS 1. GENERAL DESCRIPTION......3 5. FUNCTIONAL DESCRIPTION......7 5.5. Sound Effect (SE) Operation: 9 5.6. Microphone amplifier gain9 5.7. Playback (supersedes Record) Operation :......9 5.8. Feed-Through mode Operation: 9 5.9. LEDR Operation: 9 5.10. LEDP Operation: 9 5.15. Power-On to Playback Operation :......11 5.16. Power-On to Loop Playback Operation:.....11 6. ABSOLUTE MAXIMUM RATINGS12 7. ELECTRICAL CHARACTERISTICS......13 8. TYPICAL APPLICATION CIRCUIT......15 9. DIE INFORMATION17 11.REVISION HISTORY......19

1. GENERAL DESCRIPTION

Nuvoton's ISD18B00 ChipCorder[®] Series is a single-chip single-message record/playback device with a special TryMe feature. It features wide operating voltage range, from 2.4V to 5.5V. Its sampling frequency, ranging from 4kHz to 8kHz, is externally controlled via resistor at Rosc pin. This device also includes microphone amplifier, anti-aliasing filter, multilevel storage array, smoothing filter and speaker amplifier. Two external resistors are used to adjust the microphone amplifier gain for the incoming signal. Thus, a minimum record/playback subsystem can be configured with a microphone, a speaker, several passive components, two push buttons, and a power source.

Recordings are stored into on-chip non-volatile memory, providing zero-power message storage. This unique, single-chip solution is made possible through Nuvoton's patented Multi-Level Storage technology. Voice and audio signals are stored directly into memory in their natural form, providing high-quality, solid-state voice reproduction. The device is automatically power down after each operation cycle with typical standby current $1\mu A$. With the embedded Flash memory employed, data retention up to 100 years and typical 100,000 erase/record cycles can be reached.

2. FEATURES

Supply voltage: 2.4V ~ 5.5V

User-selected sampling frequency via external resistor

Sampling	8 kHz	6.4 kHz	5.3 kHz	4 kHz
Frequency				
Rosc	80 KΩ	100 ΚΩ	120 ΚΩ	160 ΚΩ

Variable duration selected by external resistor:

Sampling	8 kHz	6.4 kHz	5.3 kHz	4 kHz
Frequency				
ISD18B12	6 secs	7.5 secs	9 secs	12 secs
ISD18B24	12 secs	15 secs	18 secs	24 secs

RECL: Level recording

RECE : Edge-trigger, toggle on-off

PLAYL : Level playback or looping playback

• PLAYE : Edge-trigger, toggle on-off

LEDR: LED output for recording

• LEDP: LED output for playback

FT: Feed-through microphone input to speaker outputs

- Microphone amplifier gain: user control via two external resistors
- With feed-through enabled, record microphone signal into memory while feedthrough path remains active
- Playback takes precedence over the Recording operation

• TryMe: TryMe special mode

Package option: DIE

• Temperature options: 0°C ~ +50°C

3. BLOCK DIAGRAM

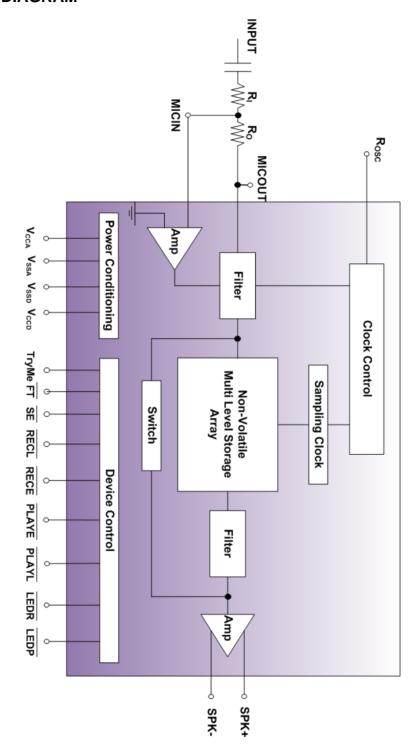
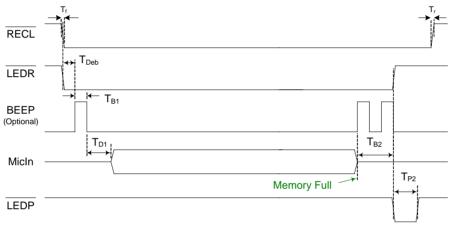


Figure 3-1 Block Diagram

4. PAD DESCRIPTION

PAD NAME	1/0	FUNCTION

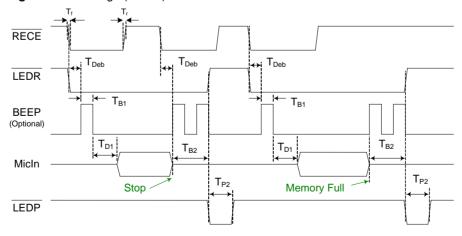
Tr.		
Vssd	I	Digital Ground: Ground path for digital circuits.
RECL	I	Level-Triggered Record: Low active input, Level-hold.
PLAYE	I	Edge-Triggered Playback: Low active input, Edge-trigger, toggle on-off.
PLAYL	I	Level-Triggered Playback: Low active input, Level-hold.
RECE	I	Edge-Triggered Record: Low active input, Edge-trigger, toggle on-off.
NC		NC: No Connect
MICIN	I	Microphone Input : The MICIN transfers input signal to the on-chip microphone amplifier.
NC		NC: No Connect
MICOUT	0	Microphone Output: Output of the microphone amplifier.
NC		NC: No Connect
NC		NC: No Connect
SPK-	0	SPK-: The negative signal of the differential speaker outputs.
Vssa	I	Analog Ground: Ground path for analog circuits.
SPK+	0	SPK+: The positive signal of the differential speaker outputs.
V _{CCA}	I	Power Supply: Power supply for analog circuits.
Rosc	I	Oscillator Resistor : Connect an external resistor from this pin to V _{SSA} to select the sampling frequency
FT	I	Feed-Through (FT) : Low active input, Level-hold, Feed-through microphone input to speaker outputs while in active state.
NC		NC: No Connect
NC		NC: No Connect
TryMe	I	TryMe Mode: High active input, Level-hold. A special operating mode.
		Tied to RECL or RECE for normal operations.
		Tide to V _{CCD} or leave unconnected for TryMe mode.
LEDP	0	LED output for Playback: During playback, this output is Low.
NC		NC: No Connect
SE	- 1	Sound Effect: Low active input, Level-hold, optional beeping sound effect.
		Tied to LEDR to activate sound effect during record.
		Tied to V _{CCD} if no sound effect desired.
V _{CCD}	I	Power Supply: Power supply for digital circuits.
LEDR	0	LED output for Recording: During recording, this output is Low.


5. FUNCTIONAL DESCRIPTION

For the following related operations, **if** SE is not enabled, then no beep sound is heard. Also, the timing diagrams may not be in direct proportional scale.

5.1. Level-triggered Record (RECL) Operation:

- Recording starts from beginning of the memory and LEDR is on.
- Recording ceases whenever RECL returns to High or when end of memory is reached and LEDR is off.
- Then device will automatically power down.


Fig. 1: Record–Level (RECL) function till memory full

5.2. Edge-triggered Record (RECE)Operation:

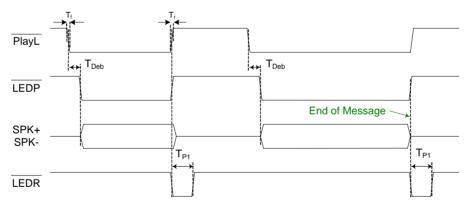
- Recording starts from beginning of the memory and LEDR is on.
- Recording ceases whenever a subsequent trigger occurs at RECE or when end of memory is reached and LEDR is off.
- Then device will automatically power down.

Fig. 2: Record-Edge (RECE) function with on-off

5.3. Edge-triggered playback (PLAYE) Operation:

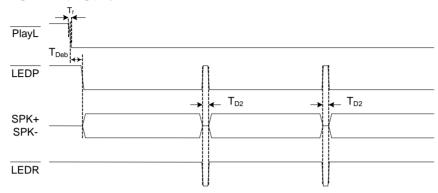
- Playback starts from beginning of the memory and LEDP is on.
- Playback stops whenever end of message or a subsequent trigger occurs and LEDP is off.

• Then device will automatically power down.


Fig. 3 : Playback–Edge (PLAYE) function

5.4. Level-triggered playback (PLAYL)Operation:

- Playback starts from beginning of the memory and **LEDP** is on.
- Playback stops whenever an EOM marker is reached or PLAYL returns to High and LEDP is off.
- Then device will automatically power down.


Fig. 4: Playback–Level (PLAYL) function

• Holding PLAYL Low constantly will perform looping playback function.

Fig. 5: Looping playback function via PLAYL

5.5. Sound Effect (SE) Operation:

 Beeping feature for recording. Once active, one-beep indicates the start of recording and two-beep represents the end of recording.

5.6. Microphone amplifier gain

 Two external resistors, R_I and R_O, are used to adjust the microphone amplifier gain with respect to the incoming signal.

5.7. Playback (supersedes Record) Operation:

- Playback takes precedence over the Recording operation.
- If either PLAYE or PLAYL is activated during a recording cycle, the recording immediately ceases and playback of the just-recorded message performs accordingly.

5.8. Feed-Through mode Operation:

- As FT is held Low, the input signal from MICIN will directly transmit to the speaker outputs.
- If either RECE is triggered or RECL is held Low simultaneously after FT is enabled, then input signal will be recorded into memory while the Feed-Through mode is still on.
- After FT is enabled, activating either PLAYE or PLAYL will first disable the feed-through path and play the recorded message. Once playback is completed, the feed-through feature resumes.

5.9. LEDR Operation:

- LEDR stays on during recording.
- Also, LEDR pulses Low momentarily at the end of playback operation.

5.10. LEDP Operation:

- LEDP stays on during playback.
- Also, LEDP pulses Low momentarily at the end of recording.

5.11. Rosc Operation:

- When the R_{OSC} varies from 80 K Ω to 160 K Ω , the sampling rate changes from 8 kHz to 4 kHz accordingly.
- When R_{OSC} resistor value is changed during playback, the tone of a recorded message will alter either faster or slower.

5.12. Speaker Outputs

• SPK+ and SPK- are used to drive an 8Ω speaker differentially. They are tri-state while device is in power down status.

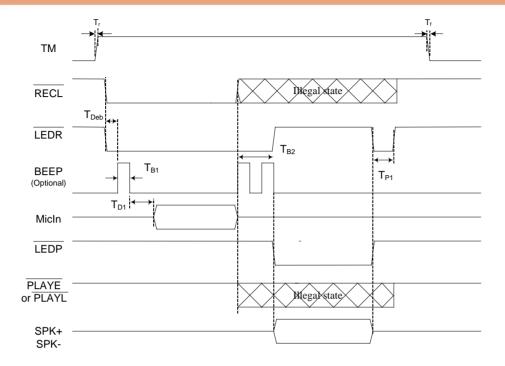
5.13. TryMe Special Operation:

This is a special feature. When **TryMe** is High, TryMe is active. When **TryMe** is Low, TryMe is disabled. The enabling and disabling of this feature is merely permitted while the device is in power down status. Once **TryMe** is set, trigger on either **RECL** or **RECE** will initiate the TryMe operation sequence. While active, the device performs a combination of the following 3 operations sequentially: record a new message, automatic playback the just-recorded message once, and then delete the recorded message. Internal pull-up exists.

The details of each operation are described as follows:

- a) Recording:
 - The recording behavior follows the characteristics of the selected record pin, RECL or RECE.
 - While recording, the **LEDR** is on if an LED is connected appropriately.
- b) Playback:
 - Upon completion of recording, the device automatic plays the just-recorded message once and stops. During this operation, change of state on any control pins is prohibited.
 - While playback, the **LEDP** is on if an LED is connected appropriately.
- c) Erasure:
 - Upon completion of playback, the device will involuntary delete the recorded message. During this
 operation, change of state on any control pins is banned.

After completion of this TryMe operation, the device returns to standby state automatically. Once playback operation starts, any input on other controls is illegal.


As a summary, the TryMe mode starts in the following conditions:

Pin	TryMe	RECL	RECE
Logic Level	1	0	1
	1	1	0

Under no circumstances, while this special operation is in progress, neither the power is disturbed nor any change of state on other control pins are permitted. Otherwise, it may cause the device becoming malfunction.

Fig 6: TryMe function via (TryMe + RECL)

5.14. Power interruption

Any power interruption during an operation is strongly not recommended. If happened, it may result the
device becoming malfunction.

5.15. Power-On to Playback Operation:

• If PLAYE or PLAYL is held at Low during power turns on, the device plays message accordingly with respect to which play control being employed.

5.16. Power-On to Loop Playback Operation:

• If PLAYL is hardwired to ground permanently, once power is on, the device performs looping playback non-stop. This status will sustain unless power is turned off.

5.17. Automatic Playback after Record Operation:

• If **LEDP** is connected to **PLAYE**, after a record operation, then the device will automatic play message once, then powers down.

6. ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS [1]

CONDITION	VALUE
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pins	(Vss – 0.3V) to (Vcc + 0.3V)
Voltage applied to Input pins (current limited to +/-20 mA)	(V _{SS} – 1.0V) to (V _{CC} + 1.0V)
Voltage applied to output pins (current limited to +/-20 mA)	(Vss - 1.0V) to (Vcc + 1.0V)
V _{CC} - V _{SS}	-0.3V to +7.0V

^[1] Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability and performance. Functional operation is not implied at these conditions.

6.1 OPERATING CONDITIONS

OPERATING CONDITIONS

CONDITION	VALUE
Operating temperature range	0°C to +50°C
Operating voltage (V _{CC}) [1]	+2.4V to +5.5V
Ground voltage (Vss) [2]	0V

 $^{^{[1]}}$ $V_{CC} = V_{CCA} = V_{CCD}$

 $^{^{[2]}}$ $V_{SS} = V_{SSA} = V_{SSD}$

7. ELECTRICAL CHARACTERISTICS

7.1. DC PARAMETERS

PARAMETER	SYMBO L	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Input Low Voltage	V _{IL}			0.3xVc c	V	
Input High Voltage	Vін	0.7xVc c			V	
Output Low Voltage	V _{OL}			0.3xVc c	V	$I_{OL} = 4.0 \text{ mA}^{[3]}$
Output High Voltage	Vон	0.7xVc c			V	Iон = -1.6 mA ^[3]
Standby Current	ISTBY		1	10	μA	[4] [5]
Record Current	IREC			15	mA	Vcc = 5.5V
Playback Current	I _{PLAY}			15	mA	V _{CC} = 5.5V, no speaker load
Pull-up device for RECL, RECE, PLAYE, PLAYE, FT & TryMe pins	R _{PU1}		40		kΩ	
Pull-up device for SE	R _{PU2}		80		kΩ	
Output Load Impedance	R _{EXT}	8			Ω	Speaker load
MIC Input Voltage	Vin	4		400	mV	Peak-to-peak
MIC Amplifier Gain	AMicAmp	0		+34	dB	Depend on RO/RI
Gain from MIC to SP+/SP-	Амѕр	+12		+46	dB	Depend on RO/RI

Notes:

^[1] Typical values @ T_A = 25°, V_{CC} = 5.5V and sampling frequency (Fs) at 8 kHz, unless stated.

^[2] All Min/Max limits are guaranteed by design, electrical testing and/or characterization. Not all specifications are 100 percent tested.

^[3] LED output during recording.

 $^{^{[4]}}$ V_{CCA} and V_{CCD} are connected together. Also, V_{SSA} and V_{SSD} are connected together.

^[5] RECL, RECE, PLAYE, PLAYL, SE, FT and TryMe must be at V_{CCD}. External components are biased under a separated power supply.

7.2. AC PARAMETERS

CHARACTERISTIC	SYMBOL	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Sampling Frequency	Fs	4		8	kHz	[3]
Record Duration	T _{REC}	6		12	sec	Depend on Fs [3]
Playback Duration	T _{PLAY}	6		12	sec	Depend on Fs [3]
Rising Time	Tr		100		nsec	[3]
Falling Time	Tf		100		nsec	[3]
Debounce Time	T _{Deb}	536k/FS			msec	[3] [4]
Beep Duration	T _{B1}		512k/FS		msec	[3] [4]
Beep-Beep Duration	T _{B2}		1536k/FS		msec	[3] [4]
Delay to start recording	T _{D1}		1552k/FS		msec	[3] [4]
Delay during looping	T _{D2}		1k/FS		msec	[3] [4]
LEDR Pulse Low Time	T _{P1}		1024k/FS		msec	[3] [4]
LEDP Pulse Low Time	T _{P2}		1280k/FS		msec	[3] [4]

Notes:

- $^{[1]}$ Conditions are V_{CC} = 5.5V and T_A = 25°C, unless specified.
- [2] All Min/Max limits are guaranteed by design, electrical testing and/or characterization. Not all specifications are 100 percent tested.
- The value changes accordingly to the F_S applied. Also, the internal oscillator may vary as much as $\pm 10\%$ over the operating temperature and voltage ranges.
- ^[4] k=1000

8. TYPICAL APPLICATION CIRCUIT

The following application examples are for references only. They make no representation or warranty that such applications shall be suitable for the use specified. Each design has to be optimized in its own system for the best performance on voice quality, current consumption, functionalities and etc.

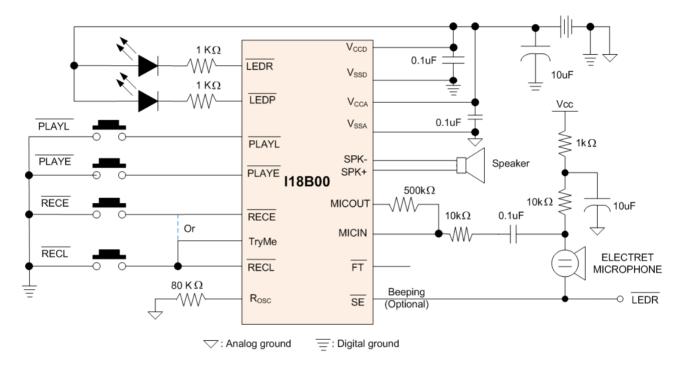
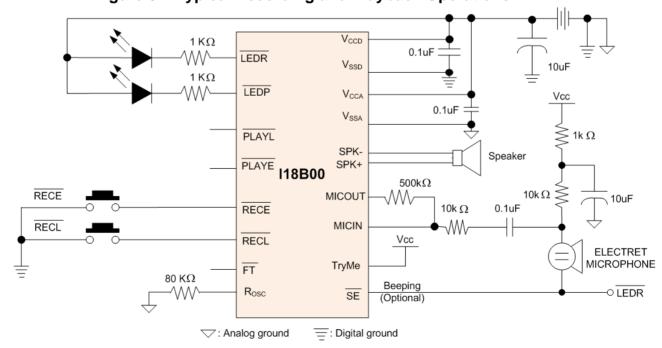
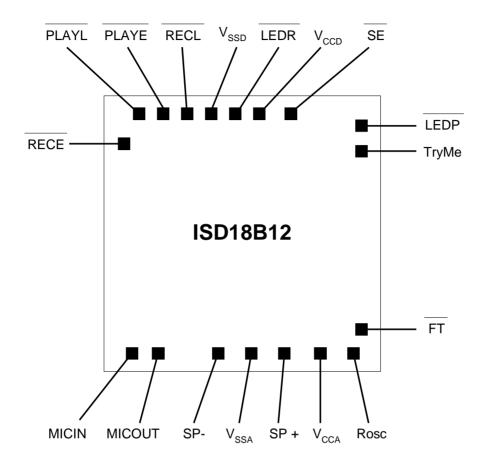



Figure 8-1 Typical Recording and Playback Operations

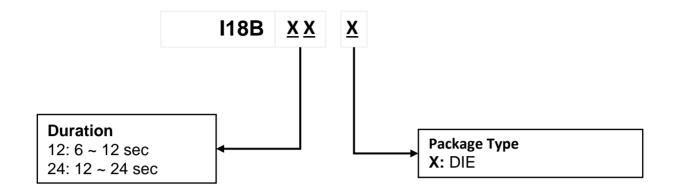
Figure 8-2 TryMe Feature

Good Audio Design Practices


Nuvoton's ChipCorder are very high-quality single-chip voice recording and playback devices. To ensure the highest quality voice reproduction, it is important that good audio design practices on layout and power supply decoupling are followed. See Application Information links below for details.

- Good Audio Design Practices (apin11.pdf)
- Single-Chip Board Layout Diagrams (apin12.pdf)

It is strongly recommended that before any design or layout project starts, the designer should contact Nuvoton Sales Rep for the most update technical information.


9. DIE INFORMATION

Contact Nuvoton Sales Representatives for information.

10.ORDERING INFORMATION

Package Number	Part Number	Ordering Number	Duration	Package	Temperature	Notes
ISD18B12X	ISD18B12X	I18B12X	6 ~ 12 sec	DIE	0°C ~ 50°C	
ISD18B24X	ISD18B24X	I18B24X	12 ~ 24 sec	DIE	0°C ~ 50°C	

11. REVISION HISTORY

REVISION	DATE	DESCRIPTION
1.0	Apr 2, 2020	Update Document Format
1.1	Jun 28, 2021	Update Ordering Information
1.2	Feb 1, 2023	Update format

IMPORTANT NOTICE

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.