onsemi

High Performance SPDT Analog Switch with Over-Voltage Tolerance

FSA3051

Description

The FSA3051 is a 6 Ω , bi-directional, low-power, two port, high-speed, Single Pole / Double Throw (SPDT) analog switch. It features an extremely low on capacitance (C_{ON}) of 7.7 pF and wide bandwidth of 1.0 GHz.

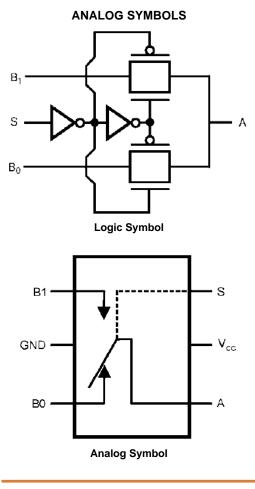
The FSA3051 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off ($V_{CC} = 0$ V), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the select (S) pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Features

- Low On Capacitance: 7.7 pF Typical
- Low On Resistance: 6 Ω Typical
- Low Power Consumption: 1 µA Maximum
 - 15 μA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN} = 1.8 V, V_{CC} = 5.5 V)
- Wide –3 db Bandwidth: 1.0 GHz
- Packaged in Ultra Small 6-Lead TMLP
- Broad Vcc Operating Range: 1.6 V to 5.5 V
- Over-Voltage Tolerance (OVT) on all Data Ports up to 6 V without External Components

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box



X2DFN6 1x1, 0.35P (TMLP) CASE 716AA

MARKING DIAGRAM

- NT = Specific Device Code
- &K = 2-Digits Lot Run Traceability Code
- &2 = 3-Digit Plant Code
- &Z = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

PIN ASSIGNMENTS

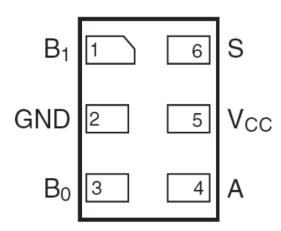


Figure 1. 6-Lead TMLP (Top-Through View)

PIN DEFINITIONS

UMLP Pin#	Name	Description
1	B ₁	Data Port
2	GND	Ground
3	B ₀	Data Port
4	А	Data Port
5	V _{CC}	Supply Voltage
6	S	Switch Select

TRUTH TABLE

S	Function
LOW	B ₀ connected to A
HIGH	B ₁ connected to A

1. LOW $\leq V_{||L|}$

2. HIGH $\ge \dot{V_{IH}}$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Supply Voltage			6.0	V
V _{CNTRL}	DC Input Voltage (Note 3)	DC Input Voltage (Note 3)			V
V _{SW}	DC Switch I/O Voltage (Note 3)		-0.50	6.00	V
I _{IK}	DC Input Diode Current			-	mA
I _{OUT}	DC Output Current			50	mA
T _{STG}	Storage Temperature			+150	°C
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)		-	1	Level
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	2	-	kV
		I/O to GND	2	-	
		2	-		
	Charged Device Model, JEDEC: JESD22-C101	1	-		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	1.6	5.5	V
V _{CNTRL}	Control Input Voltage (S) (Note 4)	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	-0.5	5.5	V
T _A	Operating Temperature	-40	+85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. The control input must be held HIGH or LOW and it must not float.

		Condition		$T_A = -40^{\circ}C$ to $85^{\circ}C$			
Symbol	Characteristic		V _{CC} (V)	Min	Тур	Max	Unit
VIK	Clamp Diode Voltage	I _{IN} = -18 mA	3.0	-	-	-1.2	V
V _{IH}	Input Voltage High		1.8 to 4.3	1.3	_	-	V
			4.3 to 5.5	1.7	_	-	
VIL	Input Voltage Low		1.8 to 4.3	-	_	0.5	V
			4.3 to 5.5	-	_	0.7	
I _{IN}	Control Input Leakage	V _{CNTRL} = 0 to V _{CC}	1.8	-1	-	1	μΑ
			5.5	-1	-	1	
I _{OZ}	Off State Leakage	$V_{SW} = 0 V \text{ to } V_{CC}$	1.8	-2	-	2	μΑ
		V _{SW} = 0 V to 3.6 V	5.5	-2	-	2	
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V_{SW} = 0 V to 4.3 V, V_{CC} = 0 V, Figure 3	0	-2	-	2	μΑ
R _{ON}	Switch On Resistance (Note 5)	V_{SW} = 0.4 V, I_{ON} = -8 mA, Figure 2	3.0	_	4	10	Ω
		V_{SW} = 1.8 V, I_{ON} = -8 mA, Figure 2	3.0	-	6	10	
R _{ON}	Switch On Resistance (Note 5)	V_{SW} = 0.4 V, I _{ON} = -8 mA, Figure 2	1.8	-	6	10	Ω
		V_{SW} = 1.8 V, I_{ON} = -8 mA, Figure 2	1.8	-	14	25	
ΔR_{ON}	On Resistance Match Between	$V_{SW} = 0.4 \text{ V}, I_{ON} = -8 \text{ mA}$	3.0	-	35	-	mΩ
	Channels (Note 5, 6)		1.8	-	40	-	
I _{CC}	Quiescent Supply Current	$V_{CNTRL} = 0$ or V_{CC} , $I_{OUT} = 0$	5.5	-	-	1	μΑ
I _{CCT}	Increase in I _{CC} Current per	V _{CNTRL} = 1.8 V	3.0	-	-	10	μΑ
	Control Voltage and V _{CC}	V _{CNTRL} = 2.6 V	5.5	-	-	10	
		V _{CNTRL} = 1.8 V	5.5	_	_	15	

DC CHARACTERISTICS (All typical value are at T_A = 25 $^\circ C$ unless otherwise specified.)

Measured by the voltage drop between A and Bn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or Bn ports).
ΔR_{ON} = R_{ON} maximum - R_{ON} minimum measured at identical V_{CC}, temperature, and voltage levels.
Guaranteed by characterization.

				$T_A = -40^{\circ}C$ to $85^{\circ}C$			
Symbol	Characteristic	Condition	V _{CC} (V)	Min	Тур	Max	Unit
t _{ON}	Turn-On Time	$R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, V_{SW} = 0.8 \text{ V},$	3.0 to 3.6	-	34	-	ns
	S to Output	Figure 4, Figure 5	1.8	-	110	-	
t _{OFF}	Turn-Off Time	$R_L = 50 \Omega, C_L = 5 pF, V_{SW} = 0.8 V,$	3.0 to 3.6	-	23	-	ns
	S to Output	Figure 4, Figure 5	1.8	-	50	-	
t _{PD}	Propagation Delay	$C_L = 5 \text{ pF}, R_L = 50 \Omega$, Figure 6, Figure 6	3.3	-	0.2	-	ns
			1.8	-	0.3	-	
t _{BBM}	Break-Before-Make	R_L = 50 Ω, C_L = 5 pF, V _{SW1} = V _{SW2} = 0.8 V, Figure 7	3.0 to 3.6	15	-	50	ns
			1.8	-	-	100	
O _{IRR}	Off Isolation	R_L = 50 Ω, f = 240 MHz, Figure 9	1.8	-	-20	-	dB
			3.0 to 3.6	-	-23	-	
Xtalk	Crosstalk	$R_L = 50 \ \Omega$, f = 240 MHz, Figure 10	1.8	-	-18	-	dB
			3.0 to 3.6	-	-23	-	dB
BW	-3 db Bandwidth	R_L = 50 Ω , C_L = 0 pF, V_{SW} = 0.4 V	1.8	-	810	-	MHz
		$R_L = 50 \ \Omega$, $C_L = 0 \ pF$, Figure 8	3.0 to 3.6	-	1	-	GHz
		$R_L = 50 \Omega$, $C_L = 5 pF$, Figure 8		-	750	-	MHz

AC CHARACTERISTICS (Note 8) (All typical value are at T_A = 25 °C unless otherwise specified.)

8. Guaranteed by characterization. Not production tested.

CAPACITANCE (Note 9)

				T _A = −40°C to 85°C			
Symbol	Characteristic	Condition	V _{CC} (V)	Min	Тур	Max	Unit
C _{IN}	Control Pin Input Capacitance		0	-	1.5	-	pF
C _{ON}	A Port On Capacitance	f = 1 MHz,	3.0	-	7.7	-	
		f = 240 MHz, Figure 12	3.3	_	7.7	-	
		f = 1 MHz,	1.8	-	10.0	-	
		f = 240 MHz, Figure 12	1.8	-	5.0	-	
C _{OFF}	Bn Port Off Capacitance	f = 1 MHz	3.0	_	3.3	-	
		f = 240 MHz, Figure 11	3.3	-	3.3	-	
		f = 1 MHz	1.8	-	5.0	-	
		f = 240 MHz, Figure 11	1.8	-	4.0	-	

9. Not production tested.

TEST DIAGRAMS

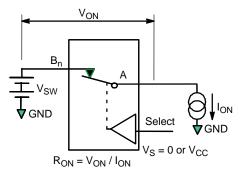


Figure 2. On Resistance

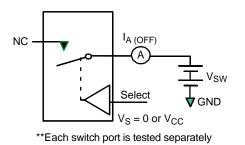
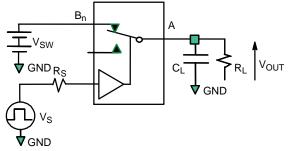



Figure 3. Off Leakage

 R_L , R_S , and C_L are functions of the application environment (see AC Tables for specific values) C_L includes test fixture and stray capacitance.

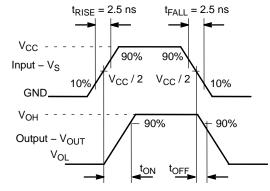


Figure 5. Turn-On / Turn-Off Waveforms

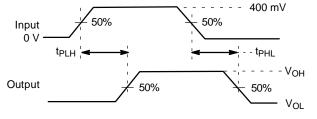
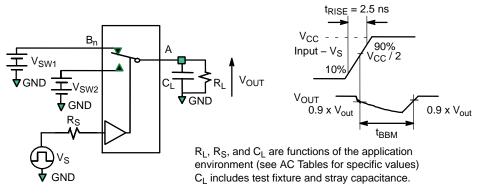
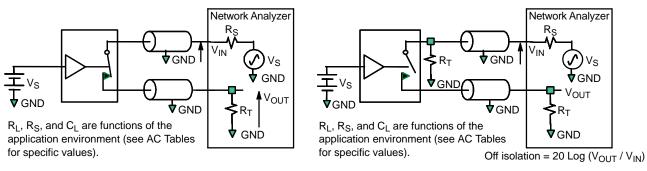
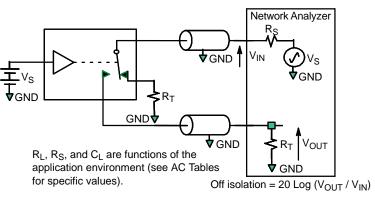


Figure 6. Propagation Delay (t_Rt_F – 500 ps)


Figure 7. Break-Before-Make Interval Timing

TEST DIAGRAMS (CONTINUED)

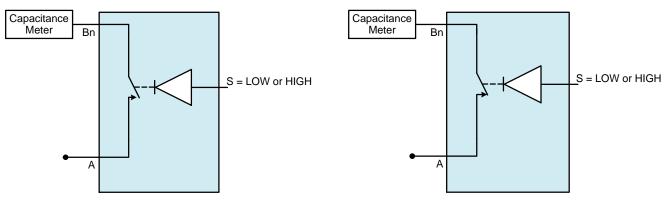
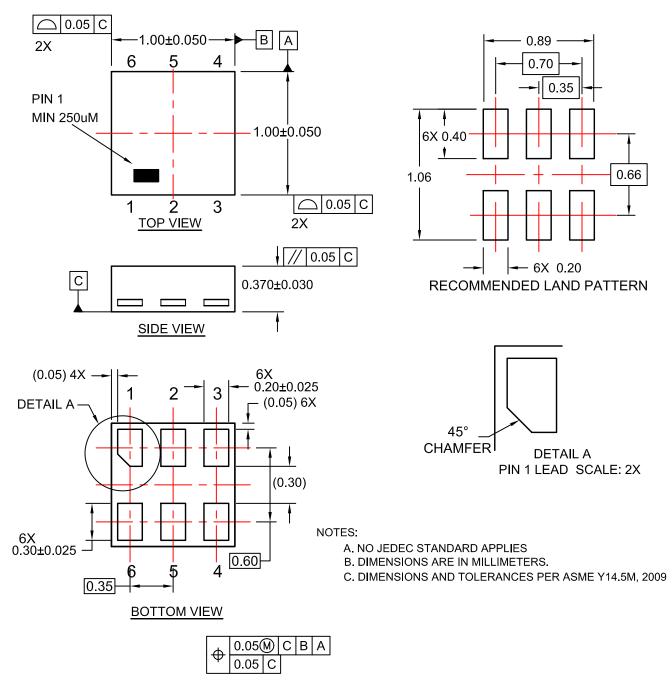


Figure 11. Channel Off Capacitance

Figure 12. Channel On Capacitance

ORDERING INFORMATION


Part Number	Top Mark	Operating Temperature Range	Package Type	Shipping [†]
FSA3051TMX	NT	−40 to +85 °C	X2DFN6 1x1, 0.35P 6-Lead, Dual, Ultra-ultrathin Molded Leadless Package (TMLP), 1.0 x 1.0 mm. Top left unit orientation in carrier tape (Pb-Free, Halide Free)	10000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

X2DFN6 1x1, 0.35P CASE 716AA ISSUE O

DATE 30 NOV 2016

DOCUMENT NUMBER:	98AON13695G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	X2DFN6 1x1, 0.35P		PAGE 1 OF 1			
ON Semiconductor and 🕼 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>