3.3 V ECL ÷2/4, ÷4/6 Clock Generation Chip # MC100LVEL39 #### **Description** The MC100LVEL39 is a low skew $\pm 2/4$, $\pm 4/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended input signal. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device. The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input. Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple LVEL39s, the Master Reset (MR) input must be asserted to ensure synchronization. For systems which only use one LVEL39, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\pm 2/4$ and the $\pm 4/6$ outputs of a single device. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. #### **Features** - 50 ps Maximum Output-to-Output Skew - Synchronous Enable/Disable - Master Reset for Synchronization - ESD Protection: Human Body Model; > 2 kV - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V to } 3.8 \text{ V with } V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -3.8 V - Internal Input Pulldown Resistors - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity: Level 3 (Pb-Free) - ◆ For Additional Information, see Application Note <u>AND8003/D</u> - Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34 #### **MARKING DIAGRAM*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### ORDERING INFORMATION | Device | Package | Shipping [†] | |------------------|-------------------------|-----------------------| | MC100LVEL39DWR2G | SOIC-20 WB
(Pb-Free) | 1000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. - Transistor Count = 419 Devices - These Devices are Pb-Free, Halogen Free and are RoHS Compliant ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Pinout: SOIC-20 WB (Top View) **Table 1. PIN DESCRIPTION** | Column Head | | |--|--| | CLK, CLK Q ₀ , Q ₁ ; Q ₀ , Q ₁ Q ₂ , Q ₃ ; Q ₂ , Q ₃ DIVSELa, DIVSELb EN MR V _{BB} V _{CC} VEE NC | ECL Diff Clock Inputs ECL Diff ÷2/4 Outputs ECL Diff ÷4/6 Outputs ECL Frequency Select Inputs ECL Sync Enable ECL Master Reset Reference Voltage Output Positive Supply Negative Supply No Connect | **Table 2. FUNCTION TABLE** | CLK | EN | MR | Function | |-----|----|----|------------| | Z | L | L | Divide | | ZZ | H | L | Hold Q0-3 | | X | X | H | Reset Qo-3 | Z = Low-to-High Transition ZZ = High-to-Low Transition X = Don't Care | DIVSELa | Q ₀ , Q ₁ Outputs | |---------|---| | L
H | Divide by 2
Divide by 4 | | | | | DIVSELb | Q ₂ , Q ₃ Outputs | Figure 2. Logic Diagram Figure 3. Timing Diagrams **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0
-6 to 0 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θЈА | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20 WB | 90
60 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 30 to 35 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | < 2 to 3 sec @ 260°C | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. LVPECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 1)) | | | -40°C 25°C | | 85°C | | | | | | | | |--------------------|---|------------|------|------------|------------|------|------------|------------|------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 50 | 59 | | 50 | 59 | | 54 | 61 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 6)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | 1.3
1.5 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | 1.2
1.4 | | 2.9
2.9 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1.0 V. Table 5. LVNECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 4)) | | | -40°C | | | 25°C | | | 85°C | | | | |-----------------|---|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 50 | 59 | | 50 | 59 | | 54 | 61 | mA | | V _{OH} | Output HIGH Voltage (Note 5) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 5) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Differential) (Note 6)
V _{PP} < 500 mV
V _{PP} ≥ 500 mV | -2.0
-1.8 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | -2.1
-1.9 | | -0.4
-0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1.0 V. Table 6. AC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 7)) | | | -40°C | | 25°C | | | 85°C | | | | | |--------------------------------------|---|-------------------|-----|---------------------|-------------------|-----|---------------------|-------------------|-----|---------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | fmax | Maximum Toggle Frequency | 1000 | | | 1000 | | | 1000 | | | MHz | | t _{PLH}
t _{PHL} | Propagation Delayed Output
CLK to Q (Diff)
CLK to Q (S.E.)
MR to Q | 850
850
600 | | 1150
1150
900 | 900
900
610 | | 1200
1200
910 | 950
950
630 | | 1250
1250
930 | ps | | t _{SKEW} | $ \begin{array}{ccc} \text{Within-Device Skew (Note 8)} & Q_0 - Q_3 \\ \text{Part-to-Part} & Q_0 - Q_3 \text{ (Diff)} \end{array} $ | | | 50
200 | | | 50
200 | | | 50
200 | ps | | tJITTER | Random CLOCK Jitter (RMS) @ 1000 MHz | | 2.0 | 3.0 | | 2.0 | 3.0 | | 2.0 | 3.0 | ps | | t _S | Setup Time EN to CLK DIVSEL to CLK | 250
400 | | | 250
400 | | | 250
400 | | | ps | | t _H | Hold Time CLK to EN CLK to Div_Sel | 100
150 | | | 100
150 | | | 100
150 | | | ps | | V _{PP} | Input Swing (Note 9) CLK | 250 | | 1000 | 250 | | 1000 | 250 | | 1000 | mV | | t _{RR} | Reset Recovery Time | | | 100 | | | 100 | | | 100 | ps | | t _{PW} | Minimum Pulse Width
CLK
MR | 500
700 | | | 500
700 | | | 500
700 | | | ps | | t _r , t _f | Output Rise/Fall Times Q (20% - 80%) | 280 | | 550 | 280 | | 550 | 280 | | 550 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 7. V_{EE} can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 8. Skew is measured between outputs under identical transitions. - 9. V_{PP}(min) is minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100 mV. Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.) ## **Resource Reference of Application Notes** | AN1405/D | - | ECL Clock Distribution Techniques | |-----------|---|--------------------------------------| | AN1406/D | _ | Designing with PECL (ECL at +5.0 V) | | AN1503/D | _ | ECLinPS™ I/O SPiCE Modeling Kit | | AN1504/D | _ | Metastability and the ECLinPS Family | | AN1568/D | _ | Interfacing Between LVDS and ECL | | AN1672/D | _ | The ECL Translator Guide | | AND8001/D | _ | Odd Number Counters Design | | AND8002/D | _ | Marking and Date Codes | | AND8020/D | _ | Termination of ECL Logic Devices | | AND8066/D | _ | Interfacing with ECLinPS | | AND8090/D | _ | AC Characteristics of ECL Devices | | | | | ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** #### SCALE 1:1 - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | | | | |-----|-------------|-------|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | Α | 2.35 | 2.65 | | | | | | | A1 | 0.10 | 0.25 | | | | | | | b | 0.35 | 0.49 | | | | | | | С | 0.23 | 0.32 | | | | | | | D | 12.65 | 12.95 | | | | | | | E | 7.40 | 7.60 | | | | | | | е | 1.27 | BSC | | | | | | | Н | 10.05 | 10.55 | | | | | | | h | 0.25 | 0.75 | | | | | | | L | 0.50 | 0.90 | | | | | | | A | 0 ° | 7 ° | | | | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales