Presettable Counters

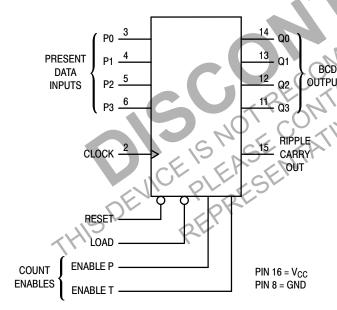
High-Performance Silicon-Gate CMOS

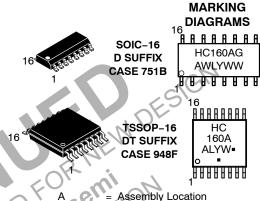
The MC74HC160A is identical in pinout to the LS160. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC160A is a programmable BCD counters with asynchronous Reset input.

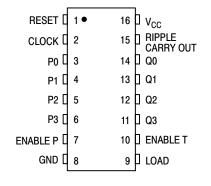
Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 234 FETs or 58.5 Equivalent Gates
- These are Pb-Free Devices




Figure 1. Logic Diagram

Device	Count Mode	Reset Mode
HC160	BCD	Asynchronous


ON Semiconductor®

http://onsemi.com

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

FUNCTION TABLE

Inputs					Outputs
Clock	Reset*	Load	Enable P	Enable T	Q
5	L	Х	Х	Х	Reset
	Н	L	Х	Х	Load Preset Data
	Н	Н	Н	Н	Count
	Н	Н	L	Х	No Count
	Н	Н	Х	L	No Count

^{*}HC160 is an Asynchronous Reset Device.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mΑ
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mΑ
P _D	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating - SOIC Package: - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter C	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		V _{CC}	٧
T _A	Operating Temperature, All Package Types		+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 3) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

H = High Level

L = Low Level

X = Don't Care

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			Guaranteed Limit		mit	
Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
Minimum High-Level Input Voltage	V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
	$\begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & & I_{out} \leq 2.4 \text{ m} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{aligned}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
	$\begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & & I_{out} \leq 2.4 \text{ m} \\ & & I_{out} \leq 4.0 \text{ mA} \\ & & I_{out} \leq 5.2 \text{ mA} \end{aligned}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	± 1.0	± 1.0	μΑ
Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	RANK	40	160	μΑ
OS CEIS NO	OF RECOMME FOR	Wh				
IS DEVIO PLE	ESE					
	Minimum High-Level Input Voltage Maximum Low-Level Input Voltage Minimum High-Level Output Voltage Maximum Low-Level Output Voltage	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)* (Figures 3 and 8)	2.0 4.5 6.0	6.0 30 35	4.8 24 28	4.0 20 24	MHz
t _{PLH}	Maximum Propagation Delay, Clock to Q (Figures 3 and 8)	2.0 4.5 6.0	170 34 29	215 43 37	255 51 43	ns
t _{PHL}		2.0 4.5 6.0	205 41 35	255 51 43	310 62 53	
t _{PHL}	Maximum Propagation Delay, Reset to Q (HC160A Only) (Figures 4 and 8)	2.0 4.5 6.0	210 42 36	265 53 45	315 63 54	ns
t _{PLH}	Maximum Propagation Delay, Enable T to Ripple Carry Out (Figures 5 and 8)	2.0 4.5 6.0	160 32 27	200 40 34	240 48 41	ns
t _{PHL}		2.0 4.5 6.0	195 39 33	245 49 42	295 59 50	
t _{PLH}	Maximum Propagation Delay, Clock to Ripple Carry Out (Figures 3 and 8)	2.0 4.5 6.0	175 35 3 0	220 44 37	265 53 45	ns
t _{PHL}	MENC	2.0 4.5 6.0	215 43 37	270 54 46	325 65 55	
t _{PHL}	Maximum Propagation Delay, Reset to Ripple Carry Out (HC160A Only) (Figures 4 and 8)	2.0 4.5 6.0	220 44 37	275 55 47	330 66 56	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 3 and 8)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF

^{*}Applies to noncascaded/nonsynchronously clocked configurations only. With synchronously cascaded counters, (1) Clock to Ripple Carry Out propagation delays, (2) Enable T or Enable P to Clock setup times, and (3) Clock to Enable T or Enable P hold times determine f_{max}. However, if Ripple Carry Out of each stage is tied to the Clock of the next stage (nonsynchronously clocked), the f_{max} in the table above is applicable. See Applications Information in this data sheet.

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	60	pF

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Preset Data Inputs to Clock	2.0	150	190	225	ns
	(Figure 6)	4.5 6.0	30 26	38 33	45 38	
t _{su}	Minimum Setup Time, Load to Clock	2.0	135	170	205	ns
	(Figure 6)	4.5 6.0	27 23	34 29	41 35	
t _{su}	Minimum Setup Time, Enable T or Enable P to Clock	2.0	200	250	300	ns
	(Figure 7)	4.5 6.0	40 34	50 43	60 51	
t _h	Minimum Hold Time, Clock to Preset Data Inputs	2.0	50	65	75	ns
	(Figure 6)	4.5 6.0	10 9	13 11	15 13	
t _h	Minimum Hold Time, Clock to Load (Figure 6)	2.0 4.5 6.0	3 3 3	3 3 3	3 3 3	ns
t _h	Minimum Hold Time, Clock to Enable T or Enable P (Figure 7)	2.0 4.5 6.0	3 3	3 3 3	3 3 3	ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 4)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _{rec}	Minimum Recovery Time, Load Inactive to Clock (Figure 6)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _w	Minimum Pulse Width, Clock (Figure 3)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _w	Minimum Recovery Time, Load Inactive to Clock (Figure 6) Minimum Pulse Width, Clock (Figure 3) Minimum Pulse Width, Reset (Figure 4) Maximum Input Rise and Fall Times (Figure 3)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 3)	2.0 4.5 6.0	1000 500 400	1000 500 400	1000 500 400	ns

FUNCTION DESCRIPTION

The HC160A is a programmable 4-bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count-enable controls. The HC160A is a BCD counter with asynchronous Reset.

INPUTS

Clock (Pin 2)

The internal flip-flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as loading occur with the rising edge of the Clock input.

Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)

These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip-flops and appear at the counter outputs. P0 (pin 3) is the least-significant bit and P3 (pin 6) is the most-significant bit.

OUTPUTS

Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)

These are the counter outputs (BCD or binary). Q0 (pin 14) is the least-significant bit and Q3 (pin 11) is the most-significant bit.

Ripple Carry Out (Pin 15)

When the counter is in its maximum state (1001 for the BCD counters or 1111 for the binary counters), this output goes high, providing an external look-ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is:

Ripple Carry Out = Enable $T \bullet Q0 \bullet \overline{Q1} \bullet \overline{Q2} \bullet Q3$ for BCD counters

CONTROL FUNCTIONS

Resetting

A low level on the Reset pin (pin 1) resets the internal flip-flops and sets the outputs (Q0 through Q3) to a low level. The HC160A resets asynchronously.

Loading

With the rising edge of the Clock, a low level on Load (pin 9) loads the data from the Preset Data Input pins (P0, P1, P2, P3) into the internal flip-flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low.

Although the HC160A is a BCD counters, they may be programmed to any state. If they are loaded with a state disallowed in BCD code, they will return to their normal count sequence within two clock pulses (see the Output State Diagram).

Count Enable/Disable

These devices have two count-enable control pins: Enable P (pin 7) and Enable T (pin 10). The devices count when these two pins and the Load pin are high. The logic equation is:

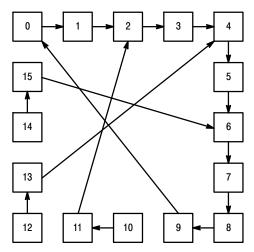
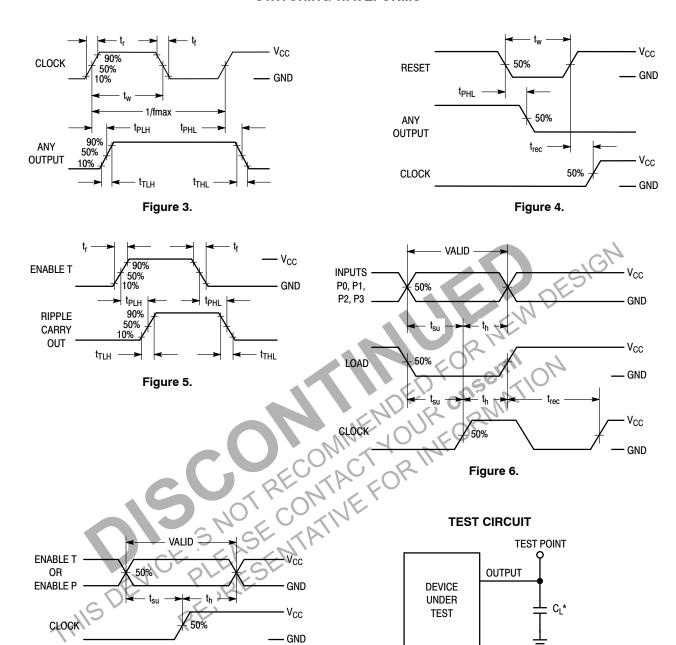
Count Enable = Enable P • Enable T • Load

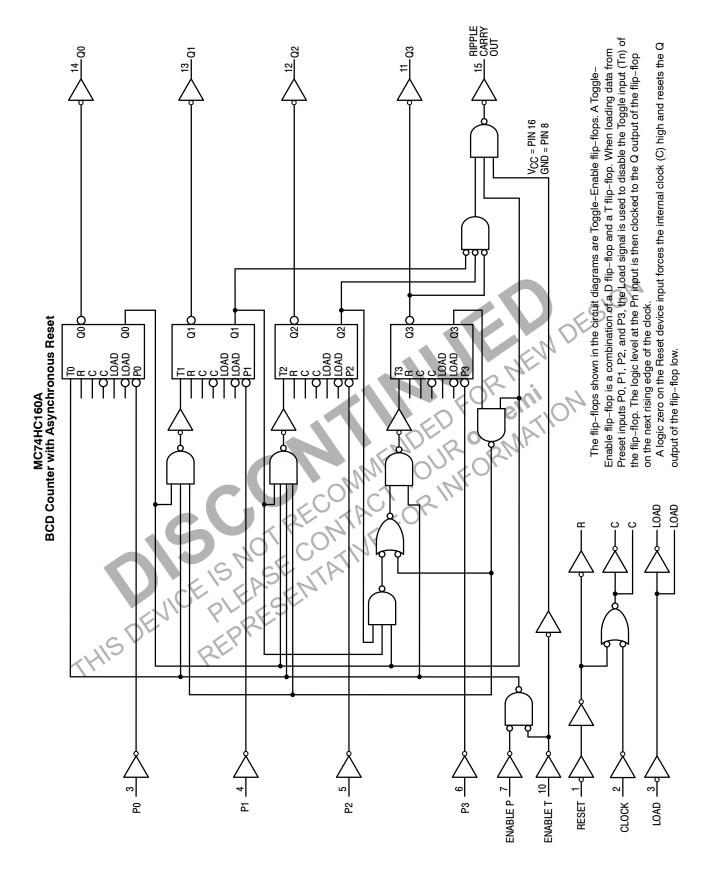
The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count-enable control; Enable T is both a count-enable and a Ripple-Carry Output control.

Table 1. COUNT ENABLE/DISABLE

Contro	ol Inputs	Result at Outputs			
Load	Enable P	Enable T	Q0 – Q3	Ripple Carry Out	
H	D/H/C) H	Count	High when Q0 - Q3 are max-	
٦	A	Н	No Count	imum*	
×C	L	Н	No Count	High when Q0 – Q3 are max- imum*	
Х	Х	L	No Count	L	

*Q0 through Q3 are maximum for the HC160A when Q3 Q2 Q1 Q0 = 1001.


Figure 2. Output State Diagrams HC160A BCD Counters

SWITCHING WAVEFORMS

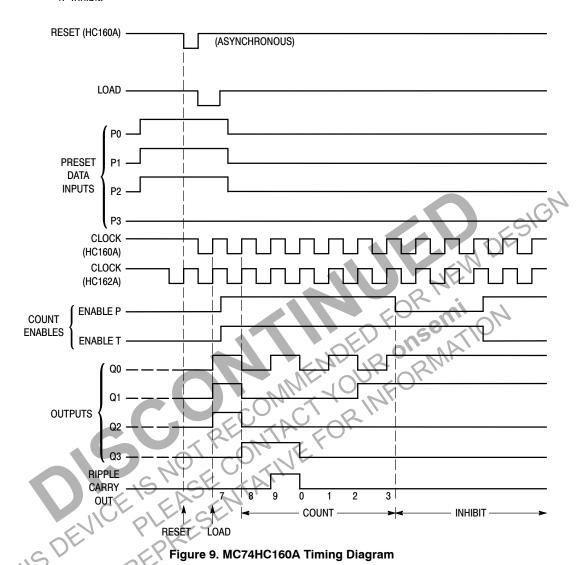
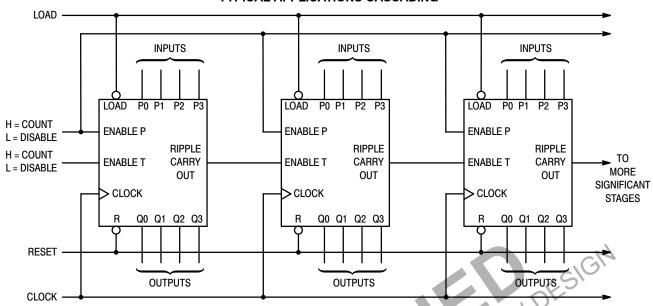

*Includes all probe and jig capacitance Figure 8.

Figure 7.



Sequence illustrated in waveforms:

- 1. Reset outputs to zero.
- 2. Preset to BCD seven.
- 3. Count to eight, nine, zero, one, two, and three.
- 4. Inhibit.

TYPICAL APPLICATIONS CASCADING

NOTE: When used in these cascaded configurations the clock f_{max} guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock.

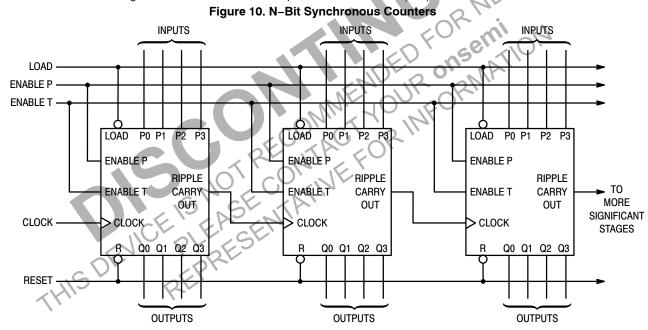


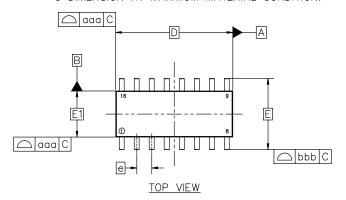
Figure 11. Nibble Ripple Counter

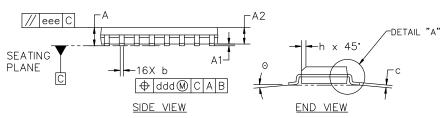
ORDERING INFORMATION

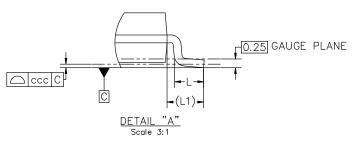
Device	Package	Shipping [†]
MC74HC160ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC160ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HC160ADTG	TSSOP-16*	96 Units / Rail
MC74HC160ADTR2G	TSSOP-16*	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

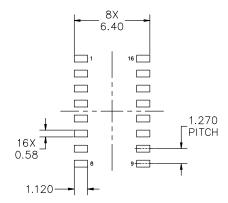
^{*}This package is inherently Pb-Free.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

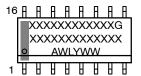

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS					
DIM	MIN	NOM	MAX		
А	1.35	1.55	1.75		
A1	0.10	0.18	0.25		
A2	1.25	1.37	1.50		
b	0.35	0.42	0.49		
С	0.19	0.22	0.25		
D		9.90 BSC			
E		6.00 BSC			
E1	3.90 BSC				
е		1.27 BSC			
h	0.25		0.50		
L	0.40	0.83	1.25		
L1		1.05 REF			
Θ	0.		7*		
TOLERAN	CE OF FC	RM AND	POSITION		
aaa		0.10			
bbb	0.20				
ccc	0.10				
ddd		0.25			
eee		0.10			

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

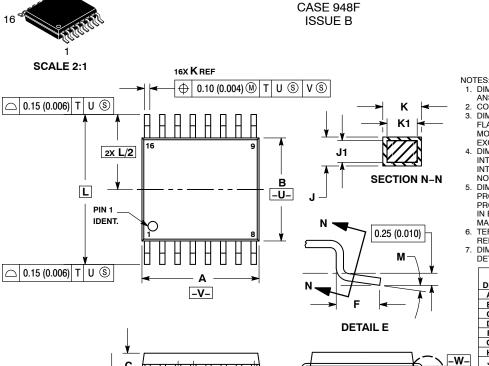
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	,	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	,	4.	CATHODE	4.			
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4		ANODE	10.			
11.	GATE, #3		ANODE	11.			
12		12	ANODE	12.			
	SOURCE, #3		-				
13.	GATE, #2	13.	ANODE	13.			
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
13. 14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	the Document Repository. COPY" in red.	
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2

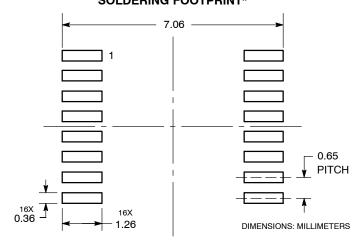
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0° 8°		0 °	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales