8-Bit Addressable Latch 1-of-8 Decoder with LSTTL **Inputs**

High-Performance Silicon-Gate CMOS

The MC74HCT259A is identical in pinout to the LS259. The device inputs are compatible with standard CMOS and LSTTL outputs.

The HCT259A has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode all outputs are LOW and unaffected by the address and data inputs. When operating the HCT259A as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

Features

- Outputs Directly Interface to CMOS, NMOS, and TTL
 Operating Voltage Range 4.5
- Low Input Current: 1 µA
- THIS DEVICE PLEASENTA High Noise Immunity Characteristic of CMOS Device
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

SOIC-16 **D SUFFIX CASE 751B**

TSSOP-16 DT SUFFIX CASE 948F

Assembly Location

Wafer Lot Year

Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

A0 [1 ●	16] v _{cc}
A1 [2	15	RESET
A2 [3	14] ENABLE
Q0 [4	13] data in
Q1 [5	12] Q7
Q2 [6	11] Q6
Q3 [7	10] Q5
GND [8	9] Q4

MODE SELECTION TABLE

Enable	Reset	Mode
L	Н	Addressable Latch
Н	Н	Memory
L	L	8-Line Demultiplexer
Н	L	Reset

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Q0 **ADDRESS** Q1 **INPUTS** 6 Q2 Q3 **NONINVERTING** 9 Q4 **OUTPUTS** 10 _{Q5} DATA IN 13 11 Q6 12 Q7 RESET PIN 16 = V_{CC} PIN 8 = GND **ENABLE**

Figure 1. Logic Diagram

LATCH SELECTION TABLE

Ad	dress Inp	uts	
С	В	Α	Latch Addressed
L	L	L	Q0
L	L	H	Q1
L	H	L	Q2
L	H	H	Q3
H	L	L	Q4
H		H	Q5
H	H	L	Q6
H	H	H	Q7

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, SOIC Package TSSOP Package	500 450	mW
T _{stg}	Storage Temperature	-65 to + 150	.c
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2)	>2000 >200	W
I _{Latchup}	Latchup Performance Above V _{DD} and Below GND at 125°C (Note 3)	±100	mA

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Tested to EIA / JESD22-A114-A.
- 2. Tested to EIA / JESD22-A115-A.
- 3. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	0	500	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V_{out} = 0.1 V or V_{CC} - 0.1 V $ I_{out} \le 20 \mu A$	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} - 0.1 V $\left I_{out}\right \le 20 \ \mu A$	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \leq 5.2 \text{ mA}$	4.5	3.98	3.84	3.70	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 5.2 \text{ mA}$	4.5	0.26	0.33	0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	5.5	± 0.1	± 1.0	± 1.0	μА
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	5.5	4	40	160	μΑ
ΔI_{CC}	Additional Quiescent Supply Current	V _{in} = 2.4V, Any One Input V _{in} = V _{CC} or GND, Other Inputs	5.5	≥ -55 ° C	25 to	125°C	mA

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$, $C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Guaranteed Limit			
Symbol	Parameter	–55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Data to Output (Figures 2 and 7)	32	32	42	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Address Select to Output (Figures 3 and 7)	32	40	45	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Enable to Output (Figures 4 and 7)	32	40	45	ns
t _{PHL}	Maximum Propagation Delay, Reset to Output (Figures 5 and 7)	22	26	32	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 7)	15	19	22	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)	30	pF

TIMING REQUIREMENTS ($V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$, Input $t_f = t_f = 6 \text{ ns}$)

		Gu	aranteed Li	mit	
Symbol	Parameter	-55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Address or Data to Enable (Figure 6)	O15	19	22	ns
t _h	Minimum Hold Time, Enable to Address or Data (Figure 6)	1	1	1	ns
t _w	Minimum Pulse Width, Reset or Enable (Figure 4 or 5)	15	19	22	ns
1	HIS DEVICE PLEASENTAIN				

SWITCHING WAVEFORMS

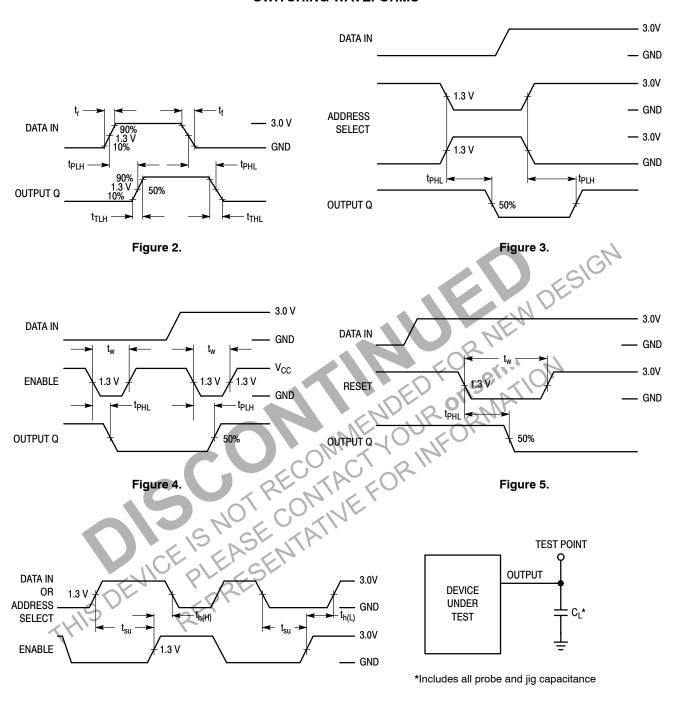


Figure 6.

Figure 7. Test Circuit

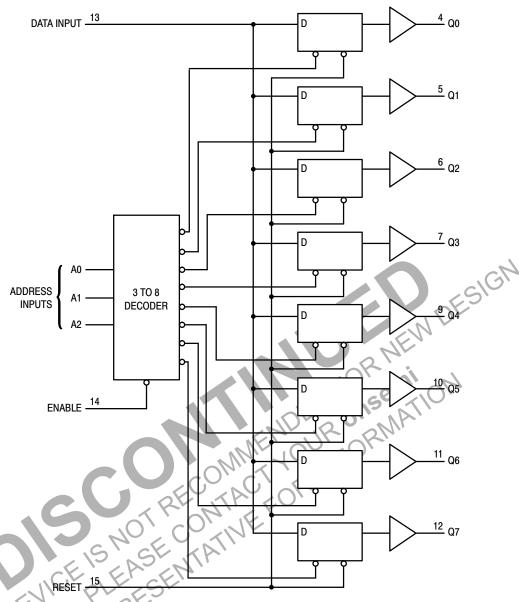
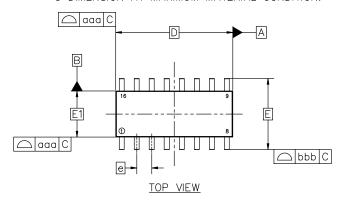


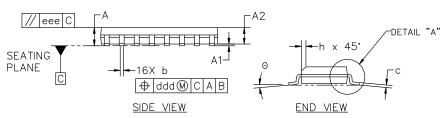
Figure 8. Expanded Logic Diagram

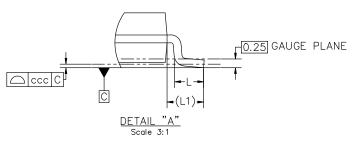
ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT259ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT259ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT259ADTR2G	TSSOP-16*	2500 Tape & Reel

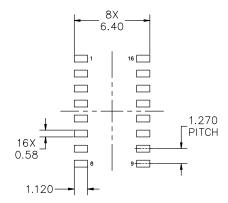
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

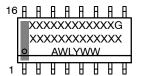

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIM	ETERS		
DIM	MIN	NOM	MAX	
А	1.35	1.55	1.75	
A1	0.10	0.18	0.25	
A2	1.25	1.37	1.50	
b	0.35	0.42	0.49	
С	0.19	0.22	0.25	
D		9.90 BSC		
E	6.00 BSC			
E1	3.90 BSC			
е	1.27 BSC			
h	0.25		0.50	
L	0.40	0.83	1.25	
L1		1.05 REF		
Θ	0.		7*	
TOLERAN	CE OF FC	RM AND	POSITION	
aaa		0.10		
bbb	0.20			
ccc	0.10			
ddd		0.25		
eee		0.10		

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

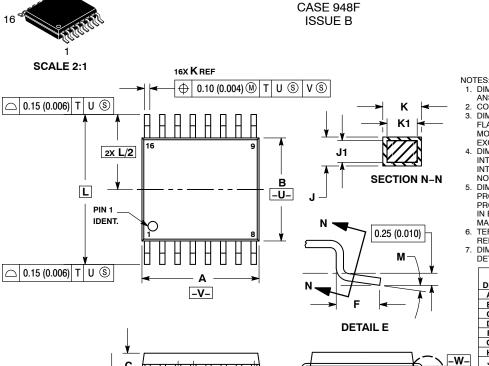
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	,	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	,	4.	CATHODE	4.			
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4		ANODE	10.			
11.	GATE, #3		ANODE	11.			
12		12	ANODE	12.			
	SOURCE, #3		-				
13.	GATE, #2	13.	ANODE	13.			
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
13. 14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	the Document Repository. COPY" in red.	
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2

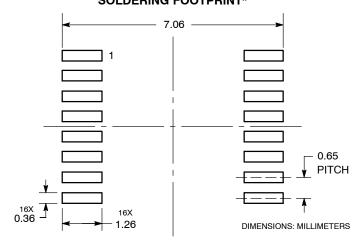
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0° 8°		0°	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales