8-Bit Shift and Store **Register with LSTTL Compatible Inputs**

High-Performance Silicon-Gate CMOS

The MC74HCT4094A is a high speed CMOS 8-bit serial shift and storage register. This device consists of an 8-bit shift register and latch with 3-state output buffers. Data is shifted on positive clock (CP) transitions. The data in the shift register is transferred to the storage register when the Strobe (STR) input is high. The output buffers are enabled when the Output Enable (OE) input is set high. Two serial outputs (QS₁, QS₂) are available for cascading multiple devices.

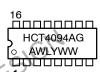
The MC74HCT4094A can be used to interface TTL or CMOS outputs to high speed CMOS inputs.

Features

- Wide Operating Voltage Range: 4.5 to 5.5 V
- Low Power Dissipation: $I_{CC} = < 10 \,\mu\text{A}$
- THIS DEVICE PLEASENTATIVE PREPRESENTATIVE PROBLEMANTATIVE PROB • In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- These are Pb-Free Devices

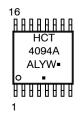
Typical Applications

- Serial-to-Parallel Conversion
- Remote Control Storage Register


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS



SOIC-16 D SUFFIX CASE 751B

DT SUFFIX

Assembly Location

= Wafer Lot = Year WW, W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

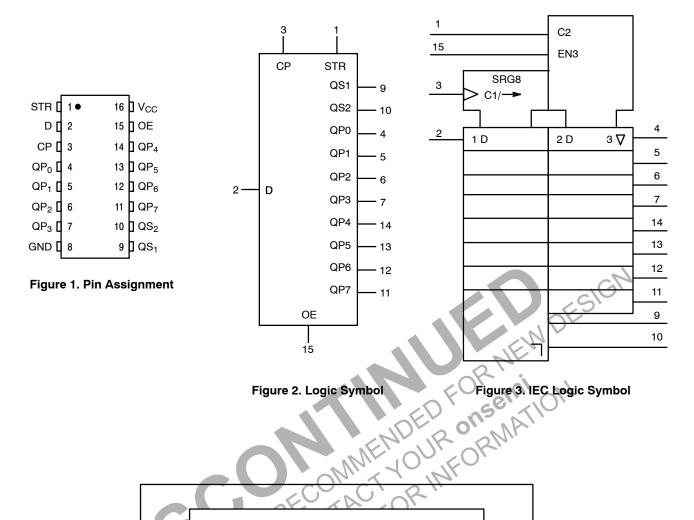


Figure 2. Logic Symbol

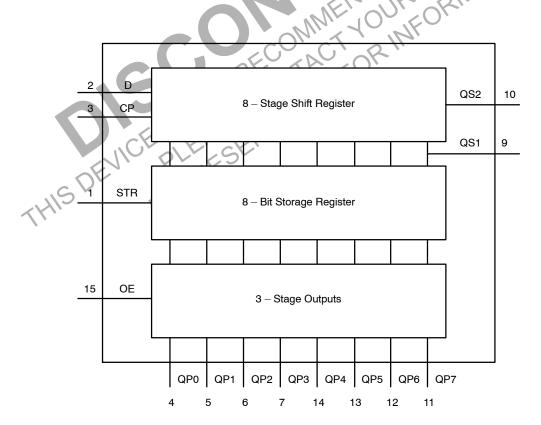
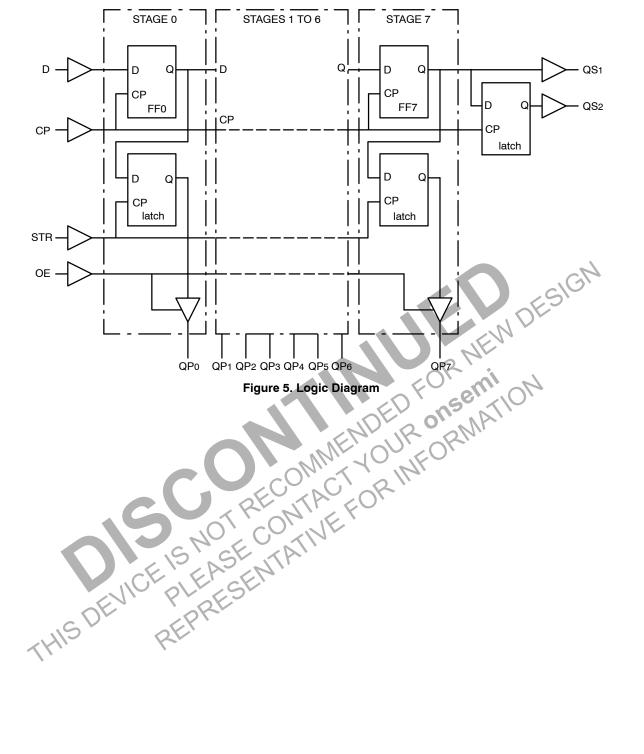



Figure 4. Functional Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
I _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 75	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

T _{stg}	Storage Temperature	– 65 to	+ 150	°C	Unused outputs must be left open.
ratings only Extended e reliability. †Derating	xceeding Maximum Ratings may damage the device. In y. Functional operation above the Recommended Operators exposure to stresses above the Recommended Operating - SOIC Package: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C	ting Conditi	ons is not	implied.	
Symbol	Parameter	Min	Max	Unit	NEV
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V	P'ai
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V	nsemi ON
T _A	Operating Temperature, All Package Types	- 55	+125	°CC	SMY
t _r , t _f	Input Rise and Fall Time (Figure 1)	0	500	ns.	DK.
~	Input Rise and Fall Time (Figure 1)	TAC	FOR		

FUNCTIONAL TABLE

INPUTS			PARALLEL OUTPUTS		SERIAL OUTPUTS		
СР	OE	STR	D	QP0	QPn	QS1	QS2
1	L	Х	Х	Z	Z	Q'6	NC
1	L	Х	Х	Z	Z	NC	QP7
1	Н	L	Х	NC	NC	Q'6	NC
1	Н	Н	L	L	QPn-1	Q'6	NC
1	Н	Н	Н	Н	QPn-1	Q'6	NC
\downarrow	Н	Н	Н	NC	NC	NC	QP7

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

- NC = no change

 ↑ = LOW-to-HIGH CP transition

 ↓ = HIGH-to-LOW CP transition

Q'6 = the information in the seventh register stage is transferred to the 8th register stage and QSn output at the positive clock edge

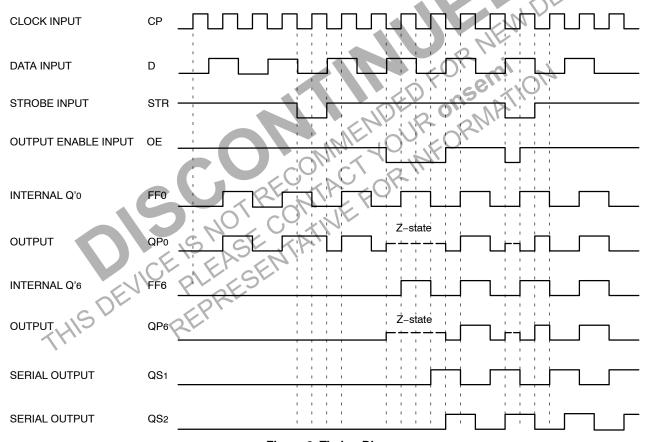
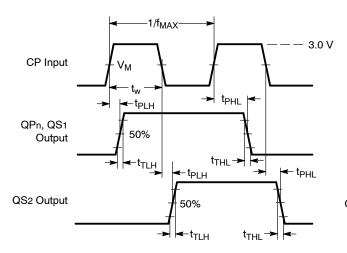


Figure 6. Timing Diagram

DC CHARACTERISTICS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Guar	anteed Limit	ts	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Test Conditions	V _{CC} (V)	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
VIL Maximum Low-Level Input Voltage VOUT = 0.1 V or VCC - 0.1 V Input Input Voltage 4.5 0.8 0.8 0.8 0.8 0.8 V VOH Minimum High-Level Output Voltage VIN = VIH or VIL Input Input Input Input Input Input Input Leakage Current VIN = VIH or VIL Input	V _{IH}		$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	4.5	2.0	2.0	2.0	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Voltage	I _{OUT} ≤ 20 μA	5.5	2.0	2.0	2.0	
$V_{OH} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	V_{IL}		$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	4.5	0.8	0.8	0.8	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Voltage	I _{OUT} ≤ 20 μA	5.5	0.8	0.8	0.8	
$V_{OL} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{OH}		$V_{IN} = V_{IH}$ or V_{IL}	4.5	4.4	4.4	4.4	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Voltage	I _{OUT} ≤ 20 μA	5.5	5.4	5.4	5.4	
Voltage $0.1 - 0.1$ 0.1 0			V _{IN} = V _{IH} or V _{IL} , II _{OUT} = 6 mA	4.5	4.25	4.2	4.1	
S.5 O.1 O.1 O.1 O.1 V _{IN} = V _{IH} or V _{IL} , I _{OUT} = 6 mA 4.5 O.25 O.3 O.4 V _{IN} = V _{IN} = V _{CC} or GND S.5 ±0.1 ±1 ±1 μA μA I _{OZ} Maximum Tri–State Output V _{IN} = V _{CC} or GND S.5 ±0.5 ±5 ±10 μA V _{IN} = V _{IN} = V _{IN} or GND μA V _{IN} = V _{IN} or GND V _{IN} V _{IN} = V _{IN} or GND V _{IN} V _{IN} = V _{IN} or GND V _{IN} V	V _{OL}		$V_{IN} = V_{IH} \text{ or } V_{IL}, _{OUT} \le 20 \mu A$	4.5	0.1	0.1	0.1	V
I_{IN} Maximum Input Leakage Current $V_{IN} = V_{CC}$ or GND $V_{IN} = V_{CC}$ or $V_{IN} = V_{C$		Voltage		5.5	0.1	0.1	0.1	
Current I_{OZ} Maximum Tri–State Output $V_{IN} = V_{CC}$ or GND 5.5 ± 0.5 ± 10 μ A			$V_{IN} = V_{IH}$ or V_{IL} , $ _{OUT} = 6$ mA	4.5	0.25	0.3	0.4	
Leakage Current Vov Vox or GND	I _{IN}		V _{IN} = V _{CC} or GND	5.5	±0.1	±1	S/(H)	μΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Leakage Current	Value - Vala or GND			±5	±10	μΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{CC}	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	4.0	40	80	μΑ
SENOT RECONTACTOR INFORM	ΔI_{CC}	Additional Quiescent Supply Current	V _{in} = 2.4V, Any One Input V _{in} = V _{CC} or GND, Other Inputs	55	≥ -55°C			mA
		5	NOT RECONTACT	100, 0R	NFOR			

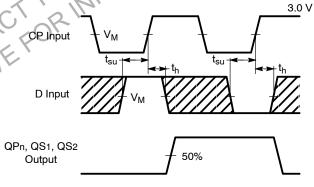

AC CHARACTERISTICS ($t_f = t_r = 6 \text{ ns}, C_L = 50 \text{ pF}$)

				Guai	anteed Limit	s	
Symbol	Parameter	Test Conditions	V _{CC} (V)	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QS ₁	Figure 7	4.5	30	38	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QS ₂	Figure 7	4.5	27	34	41	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QP _n	Figure 7	4.5	39	49	59	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay STR to QP _n	Figure 8	4.5	36	45	54	ns
t _{PZH} , t _{PZL}	Maximum 3-State Output Enable Time OE to QP _n	Figure 9	4.5	35	44	53	ns
t _{PHZ} , t _{PLZ}	Maximum 3-State Output Enable Time OE to QP _n	Figure 9	4.5	25	31	38	ns
t _{THL} , t _{TLH}	Maximum Output Transition Time	Figure 7	4.5	18	22	25	ns
t _W	Minimum Clock Pulse Width High or Low	Figure 7	4.5	16	20	24	ns
t _W	Minimum Strobe Pulse Width High	Figure 8	4,5	16	20	24	ns
t _{SU}	Minimum Set-up Time D to CP	Figure 10	4.5	C 010- 10	13	15	ns
t _{SU}	Minimum Set-up Time CP to STR	Figure 8	4.5	205	25	30	ns
t _h	Minimum Hold Time D to CP	Figure 10	4.5	5 35 M	3	3	ns
t _h	Minimum Hold Time CP to STR	Figure 8	4.5	71 0	0	0	ns
f _{MAX}	Minimum Clock Pulse Frequency	Figure 7	4.5	30	24	20	MHz
C _{in}	Maximum Input Capacitance	-0PIE	_	10	10	10	pF
C _{out}	Maximum Output Capacitance	2/1/4	-	15	15	15	pF
C _{PD}	Power Dissipation Capacitance (Note 2)	Th	_	140	140	140	pF

C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC}(operating) ≈ C_{PD} x V_{CC} x f_{IN} x N_{SW} where N_{SW} = total number of outputs switching and f_{IN} = switching frequency.

AC WAVEFORMS

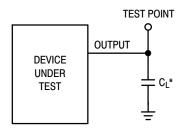
 $(V_{M} = 1.3 V)$


STR Input

One of the state of

Figure 7. Waveforms showing the clock (CP) to output (QPn, QS1, QS2) propagation delays, the clock pulse width and the maximum clock frequency.

Figure 8. Waveforms showing the strobe (STR) to output (QPn) propagation delays, the strobe pulse width, the clock set-up and hold times for the strobe input.



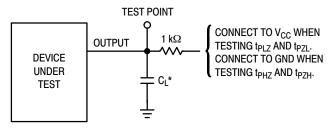

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 9. Waveforms showing the 3-state enable and disable times for input OE.

Figure 10. Waveforms showing the data set-up and hold times for the data input.

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 11. AC Characteristics Load Circuits

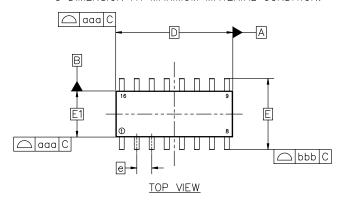
ORDERING INFORMATION

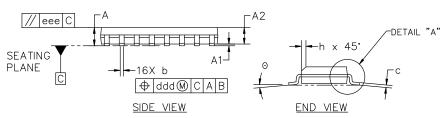
Device	Package	Shipping [†]
MC74HCT4094ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT4094ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT4094ADT	TSSOP-16*	96 Units / Rail
MC74HCT4094ADTR2G	TSSOP-16*	2500 Tape & Reel
†For information on tape and reel specifications, i Specifications Brochure, BRD8011/D. *This package is inherently Pb–Free.	RECONNER POUR SENTATIVE FOR INT	PORMA

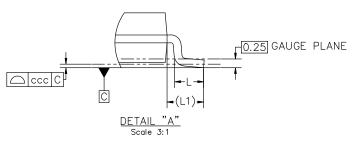
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}Includes all probe and jig capacitance

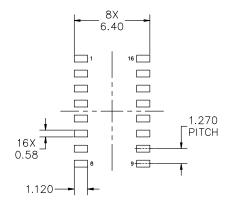
^{*}This package is inherently Pb-Free.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

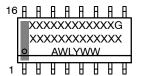

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS						
DIM	MIN NOM MAX					
А	1.35	1.55	1.75			
A1	0.10	0.18	0.25			
A2	1.25	1.37	1.50			
b	0.35	0.42	0.49			
С	0.19	0.22	0.25			
D		9.90 BSC				
E		6.00 BSC				
E1	3.90 BSC					
е		1.27 BSC				
h	0.25		0.50			
L	0.40	0.83	1.25			
L1		1.05 REF				
Θ	0.		7*			
TOLERAN	TOLERANCE OF FORM AND POSITION					
aaa	0.10					
bbb	0.20					
ccc	0.10					
ddd		0.25				
eee		0.10				

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 1 OF 2		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

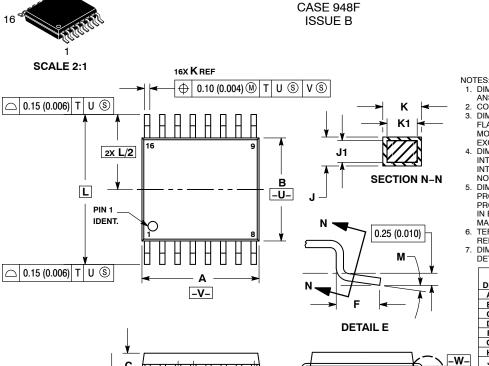
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	,	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	,	4.	CATHODE	4.			
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4		ANODE	10.			
11.	GATE, #3		ANODE	11.			
12	SOURCE, #3	12.	ANODE	12.			
13.	GATE, #2	13.	ANODE	13.			
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
13. 14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	98ASB42566B Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or Printed versions are uncontrolled except when accessed and the printed versions are uncontrolled except when accessed are uncontrolled except when accessed are uncontrolled except when a controlled except when a cont			
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	.27P	PAGE 2 OF 2		

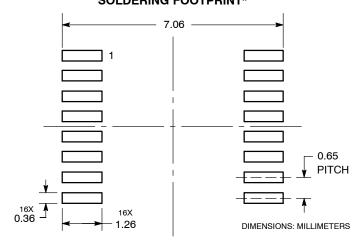
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0 °	8°	0°	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Docume Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in rec			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales