8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter ### with LSTTL-Compatible Inputs ### MC74VHCT259A The MC74VHCT259 is an 8-bit Addressable Latch fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The VHC259 is designed for general purpose storage applications in digital systems. The device has four modes of operation as shown in the mode selection table. In the addressable latch mode, the signal on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode, all outputs are LOW and unaffected by the address and data inputs. When operating the VHCT259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V because it has full 5.0 V CMOS level output swings. The VHCT259A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $V_{\rm CC}$ = 0 V. These input and output structures help prevent device destruction caused by supply voltage–input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - High Speed: $t_{PD} = 7.6 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25$ °C - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$ - Power Down Protection Provided on Inputs and Outputs - Pin and Function Compatible with Other Standard Logic Families 1 - Latchup Performance Exceeds 300 mA - ESD Performance: HBM > 2000 V - These Devices are Pb-Free and are RoHS Compliant SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F #### **MARKING DIAGRAMS** A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 7. Figure 1. Logic Diagram Figure 2. Pin Assignment Figure 3. IEC Logic Symbol #### **MODE SELECTION TABLE** | Enable | Reset | Mode | |--------|-------|----------------------| | L | Н | Addressable Latch | | Н | Н | Memory | | L | L | 8-Line Demultiplexer | | Н | L | Reset | #### **LATCH SELECTION TABLE** | Addr | ess Ir | puts | Latch | |------|--------|------|-----------| | С | В | Α | Addressed | | L | L | L | Q0 | | L | L | Н | Q1 | | L | Н | L | Q2 | | L | Н | Н | Q3 | | Н | L | L | Q4 | | Н | L | Н | Q5 | | н | Н | L | Q6 | | Н | Н | Н | Q7 | Figure 4. Expanded Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |----------------------|--|--|------| | V _{CC} | Positive DC Supply Voltage | -0.5 to +7.0 | V | | V _{IN} | Digital Input Voltage | -0.5 to +7.0 | ٧ | | V _{OUT} | DC Output Voltage Output in 3-State High or Low State | -0.5 to +7.0
-0.5 to V _{CC} +0.5 | V | | I _{IK} | Input Diode Current | -20 | mA | | lok | Output Diode Current | ±20 | mA | | l _{out} | DC Output Current, per Pin | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ±75 | mA | | P _D | Power Dissipation in Still Air SOIC TSSOP | 200
180 | mW | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | V _{ESD} | ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3) | >2000
>200
>200 | ٧ | | I _{LATCHUP} | Latchup Performance Above V _{CC} and Below GND at 125°C (Note 4) | ±300 | mA | | θ_{JA} | Thermal Resistance, Junction-to-Ambient SOIC TSSOP | 143
164 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Tested to EIA/JESD22-A114-A - 2. Tested to EIA/JESD22-A115-A - 3. Tested to JESD22-C101-A - 4. Tested to EIA/JESD78 #### RECOMMENDED OPERATING CONDITIONS | Symbol | Characteristics | | Max | Unit | |---------------------------------|--|-----|------------------------|------| | V _{CC} | DC Supply Voltage | 4.5 | 5.5 | V | | V _{IN} | DC Input Voltage | | 5.5 | V | | V _{OUT} | DC Output Voltage Output in 3-State High or Low State | | 5.5
V _{CC} | V | | T _A | Operating Temperature Range, all Package Types | | 125 | °C | | t _r , t _f | Input Rise or Fall Time $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0 | 20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. # DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 5. Failure Rate vs. Time Junction Temperature ### DC CHARACTERISTICS (Voltages Referenced to GND) | | | | V _{CC} | T | A = 25° | С | T _A ≤ | 85°C | -55°C ≤ T | A ≤ 125°C | | |------------------|---|--|-----------------|------|---------|------|------------------|------|-----------|-----------|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 4.5 to 5.5 | 2 | | | 2 | | 2 | | V | | V _{IL} | Maximum Low-Level
Input Voltage | | 4.5 to 5.5 | | | 0.8 | | 0.8 | | 0.8 | V | | V _{OH} | Maximum High-Level
Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu A$ | 4.5 | 4.4 | 4.5 | | 4.4 | | 4.4 | | V | | | | $V_{IN} = V_{IH}$ or V_{IL}
$I_{OH} = -8$ mA | 4.5 | 3.94 | | | 3.8 | | 3.66 | | | | V _{OL} | Maximum Low-Level
Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu A$ | 4.5 | | 0 | 0.1 | | 0.1 | | 0.1 | V | | | | $V_{IN} = V_{IH}$ or V_{IL}
$I_{OH} = 8$ mA | 4.5 | | | 0.36 | | 0.44 | | 0.52 | | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 0 to 5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μΑ | | Icc | Maximum Quiescent
Supply Current | V _{IN} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | | 40.0 | μΑ | | Гсст | Additional Quiescent
Supply Current
(per Pin) | Any one input: $V_{IN} = 3.4$ V All other inputs: $V_{IN} = V_{CC}$ or GND | 5.5 | | | 1.35 | | 1.5 | | 1.5 | μΑ | | I _{OPD} | Output Leakage Current | V _{OUT} = 5.5 V | 0 | | | 0.5 | | 5 | | 5 | μΑ | ### AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$) | | | | Т | A = 25° | С | T _A = ≤ | 85°C | -55°C ≤ T | _A ≤ 125°C | | |--|--|--|-----|------------|--------------|--------------------|--------------|------------|----------------------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation
Delay, Data to Output | $V_{CC} = 3.3 \pm 0.3 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 8.5
8.5 | 11.0
16.0 | 1.0
1.0 | 13.0
18.0 | 1.0
1.0 | 13.0
18.0 | ns | | | (Figures 6 and 11) | $V_{CC} = 5.0 \pm 0.5 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 6.0
6.0 | 8.0
10.0 | 1.0
1.0 | 9.5
11.5 | 1.0
1.0 | 9.5
11.5 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation
Delay, Address Select | $V_{CC} = 3.3 \pm 0.3 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 8.5
8.5 | 11.0
16.0 | 1.0
1.0 | 13.0
18.0 | 1.0
1.0 | 13.0
18.0 | ns | | | to Output
(Figures 7 and 11) | $V_{CC} = 5.0 \pm 0.5 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 6.0
8.5 | 8.0
10.0 | 1.0
1.0 | 9.5
11.5 | 1.0
1.0 | 9.5
11.5 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation
Delay, Enable to Output | $V_{CC} = 3.3 \pm 0.3 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 8.5
8.5 | 11.0
16.0 | 1.0
1.0 | 13.0
18.0 | 1.0
1.0 | 13.0
18.0 | ns | | | (Figures 8 and 11) | $V_{CC} = 5.0 \pm 0.5 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 6.0
8.5 | 8.0
10.0 | 1.0
1.0 | 9.5
11.5 | 1.0
1.0 | 9.5
11.5 | | | Delay, Reset to O | Maximum Propagation
Delay, Reset to Output | $V_{CC} = 3.3 \pm 0.3 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 8.5
8.5 | 11.0
16.0 | 1.0
1.0 | 13.0
18.0 | 1.0
1.0 | 13.0
18.0 | ns | | | (Figures 9 and 11) | $V_{CC} = 5.0 \pm 0.5 V$ $C_{L} = 15 pF$ $C_{L} = 50 pF$ | | 6.0
8.5 | 8.0
10.0 | 1.0
1.0 | 9.5
11.5 | 1.0
1.0 | 9.5
11.5 | | | C _{IN} | Maximum Input
Capacitance | | | 6 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | |-----------------|--|--|----| | C _{PI} | Power Dissipation Capacitance (Note 5) | 30 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. #### **TIMING REQUIREMENTS** (Input $t_r = t_f = 3.0 \text{ns}$) | | | | T _A = 25°C | | $T_A = \leq 85^{\circ}C$ | | $T_A = \le 125^{\circ}C$ | | | | |--------------------------------|---|--------------------------|-----------------------|-----|--------------------------|-----|--------------------------|-----|-----|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _w | Minimum Pulse Width, Reset or Enable | $V_{CC} = 3.3 \pm 0.3 V$ | 5.0 | | | 5.5 | | 5.5 | | ns | | | (Figure 10) | $V_{CC} = 5.0 \pm 0.5 V$ | 5.0 | | | 5.5 | | 5.5 | | | | t _{su} | Minimum Setup Time, Address or Data to Enable | $V_{CC} = 3.3 \pm 0.3 V$ | 4.5 | | | 4.5 | | 4.5 | | ns | | | (Figure 10) | $V_{CC} = 5.0 \pm 0.5 V$ | 3.0 | | | 3.0 | | 3.0 | | | | t _h | Minimum Hold Time, Enable to Address or Data | $V_{CC} = 3.3 \pm 0.3 V$ | 2.0 | | | 2.0 | | 2.0 | | ns | | (Figure 8 or 9) | | $V_{CC} = 5.0 \pm 0.5 V$ | 2.0 | | | 2.0 | | 2.0 | | | | t _{r,} t _f | Maximum Input, Rise and Fall Times | $V_{CC} = 3.3 \pm 0.3 V$ | | | 400 | | 300 | | 300 | ns | | | (Figure 6) | $V_{CC} = 5.0 \pm 0.5 V$ | | | 200 | | 100 | | 100 | | Figure 6. Switching Waveform Figure 7. Switching Waveform Figure 8. Switching Waveform Figure 9. Switching Waveform Figure 10. Switching Waveform *Includes all probe and jig capacitance Figure 11. Test Circuit #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-----------------------|-----------------------| | MC74VHCT259ADR2G | SOIC-16
(Pb-Free) | 2500 Tape & Reel | | MC74VHCT259ADTRG | TSSOP-16
(Pb-Free) | 2500 Tape & Reel | #### **DISCONTINUED** (Note 6) | MC74VHCT259ADG | SOIC-16
(Pb-Free) | 48 Units / Rail | |-----------------|-----------------------|-----------------| | MC74VHCT259ADTG | TSSOP-16
(Pb-Free) | 96 Units / Rail | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>. 6. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. #### SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M **DATE 18 OCT 2024** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES. - 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE. - 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION. | MILLIMETERS | | | | | | | |-------------|-------------|----------|----------|--|--|--| | DIM | MIN NOM MAX | | | | | | | А | 1.35 | 1.55 | 1.75 | | | | | A1 | 0.10 | 0.18 | 0.25 | | | | | A2 | 1.25 | 1.37 | 1.50 | | | | | b | 0.35 | 0.42 | 0.49 | | | | | С | 0.19 | 0.22 | 0.25 | | | | | D | | 9.90 BSC | | | | | | E | | 6.00 BSC | | | | | | E1 | | 3.90 BSC | | | | | | е | | 1.27 BSC | | | | | | h | 0.25 | | 0.50 | | | | | L | 0.40 | 0.83 | 1.25 | | | | | L1 | | 1.05 REF | | | | | | Θ | 0. | | 7* | | | | | TOLERAN | CE OF FC | RM AND | POSITION | | | | | aaa | 0.10 | | | | | | | bbb | 0.20 | | | | | | | ccc | 0.10 | | | | | | | ddd | 0.25 | | | | | | | eee | | 0.10 | | | | | #### RECOMMENDED MOUNTING FOOTPRINT *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------------|--|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1.27P | | PAGE 1 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. #### **SOIC-16 9.90x3.90x1.37 1.27P** CASE 751B ISSUE M **DATE 18 OCT 2024** # GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: | | STYLE 2: | | STYLE 3: | S | TYLE 4: | | |-------------------|------------------------------------|-------------------|----------------|------------|--|---------|-------------------| | | COLLECTOR | PIN 1. | CATHODE | PIN 1. | COLLECTOR, DYE #1 | PIN 1. | COLLECTOR, DYE #1 | | | BASE | 2. | ANODE | 2. | BASE. #1 | 2. | | | 3. | EMITTER | 3. | NO CONNECTION | 3. | EMITTER. #1 | 3. | | | 4. | NO CONNECTION | 4. | CATHODE | 4. | COLLECTOR, #1 | 4. | COLLECTOR, #2 | | 5. | EMITTER | 5. | CATHODE | 5. | COLLECTOR, #2 | 5. | COLLECTOR, #3 | | 6. | BASE | 6. | NO CONNECTION | 6. | BASE, #2 | 6. | COLLECTOR, #3 | | 7. | COLLECTOR | 7. | ANODE | 7. | EMITTER, #2 | 7. | COLLECTOR, #4 | | 8. | COLLECTOR | 8. | CATHODE | 8. | COLLECTOR, #2 | 8. | COLLECTOR, #4 | | 9. | BASE | 9. | CATHODE | 9. | COLLECTOR, #3 | 9. | BASE, #4 | | 10. | EMITTER | 10. | ANODE | 10. | BASE, #3 | 10. | EMITTER, #4 | | 11. | NO CONNECTION | 11. | NO CONNECTION | 11. | EMITTER, #3 | 11. | | | | EMITTER | 12. | CATHODE | 12. | COLLECTOR, #3 | 12. | | | 13. | BASE | 13. | | 13. | COLLECTOR, #4 | 13. | BASE, #2 | | 14. | COLLECTOR | 14. | NO CONNECTION | 14. | BASE, #4 | 14. | | | 15. | EMITTER | 15. | ANODE | 15. | EMITTER, #4 | 15. | | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | | | | | | | | | | | STYLE 5: | | STYLE 6: | | STYLE 7: | | | | | PIN 1. | DRAIN, DYE #1 | PIN 1. | CATHODE | PIN 1. | SOURCE N-CH | | | | 2. | DRAIN, #1 | 2. | CATHODE | 2. | COMMON DRAIN (OUTPUT) | | | | 3. | , | 3. | CATHODE | 3. | COMMON DRAIN (OUTPUT) | | | | 4. | , | 4. | CATHODE | 4. | | | | | 5. | DRAIN, #3 | 5. | | 5. | COMMON DRAIN (OUTPUT) | | | | 6. | DRAIN, #3 | 6. | | 6. | COMMON DRAIN (OUTPUT) | | | | 7. | DRAIN, #4 | | CATHODE | 7. | COMMON DRAIN (OUTPUT) | | | | 8. | DRAIN, #4 | | CATHODE | 8. | SOURCE P-CH | | | | | GATE, #4 | | ANODE | 9. | SOURCE P-CH | | | | 10. | SOURCE, #4 | | ANODE | 10. | | | | | 11. | GATE, #3 | | ANODE | 11. | | | | | 12 | | 12 | ANODE | 12. | | | | | | SOURCE, #3 | | - | | | | | | 13. | GATE, #2 | 13. | ANODE | 13. | | | | | 13.
14. | GATE, #2
SOURCE, #2 | 13.
14. | ANODE | 14. | COMMON DRAIN (OUTPUT) | | | | 13.
14.
15. | GATE, #2
SOURCE, #2
GATE, #1 | 13.
14.
15. | ANODE
ANODE | 14.
15. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | 13.
14. | GATE, #2
SOURCE, #2 | 13.
14. | ANODE | 14. | COMMON DRAIN (OUTPUT) | | | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Reposi
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------------|--|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1.27P | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **DATE 19 OCT 2006** ☐ 0.10 (0.004) SEATING PLANE D TSSOP-16 WB - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | | |-----|-------------|------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 BSC | | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 BSC | | 0.252 BSC | | | | М | 0 ° | 8° | 0 ° | 8 ° | | #### **RECOMMENDED** SOLDERING FOOTPRINT* ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC** MARKING DIAGRAM* XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L = Year W = Work Week G or • = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-16 | | PAGE 1 OF 1 | | **DETAIL E** onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales