4-Channel Differential 1:2 Mux/Demux Switch for PCI Express Gen2 The NCN2411 is a 4–Channel differential SPDT switch designed to route PCI Express Gen2 signals. When used in a PCI Express application, the switch can handle up to two PCIe lanes. Due to the ultra–low ON–state capacitance (2 pF typ) and resistance (7.5 Ω typ), this switch is ideal for switching high frequency signals up to a signal bit rate (BR) of 5 Gbps. This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space–saving 3.5 x 9 x 0.75 mm WQFN42 package. #### **Features** - \bullet V_{DD} Power Supply from 1.5 V to 2.0 V - 4 Differential Channels 2:1 MUX/DEMUX - Compatible with PCIe 2.0 - Data Rate: Supports 5 Gbps - Low Crosstalk: -30 dB @ 3 GHz - Low Bit-to-Bit Skew: 5 ps - Low R_{ON} Resistance: 13 Ω max - Low C_{ON} Capacitance: 2 pF - Low Supply Current: 200 μA - Insertion Loss: -2 dB @ 3 GHz - Space Saving, Small WQFN-42 Package - This is a Pb-Free Device #### **Typical Applications** - Notebook Computer - Desktop computer - Server/Storage Area Network Figure 1. Application Schematic ### ON Semiconductor® http://onsemi.com #### MARKING DIAGRAM NCN2411 AWLYYWWG #### WQFN42 CASE 510AP A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|---------------------|-----------------------| | NCN2411MTTWG | WQFN42
(Pb-Free) | 2000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Figure 2. NCN2411 Functional Block Diagram (Top View) #### **TRUTH TABLE** | Function | SEL | |----------------------------------|-----| | A _N to B _N | L | | A _N to C _N | Н | Figure 3. Pin Description (Top View) #### PIN FUNCTION AND DESCRIPTION | Pin | Pin Name | Description | |--|----------|---| | 2, 3 | A0+, A0- | Signal I/0, Channel 0, Port A | | 6, 7 | A1+, A1- | Signal I/0, Channel 1, Port A | | 11, 12 | A2+, A2- | Signal I/0, Channel 2, Port A | | 15, 16 | A3+, A3- | Signal I/0, Channel 3, Port A | | 38, 37 | B0+, B0- | Signal I/0, Channel 0, Port B | | 36, 35 | B1+, B1- | Signal I/0, Channel 1, Port B | | 29, 28 | B2+, B2- | Signal I/0, Channel 2, Port B | | 27, 26 | B3+, B3- | Signal I/0, Channel 3, Port B | | 34, 33 | C0+, C0- | Signal I/0, Channel 0, Port C | | 32, 31 | C1+, C1- | Signal I/0, Channel 1, Port C | | 25, 24 | C2+, C2- | Signal I/0, Channel 2, Port C | | 23, 22 | C3+, C3- | Signal I/0, Channel 3, Port C | | 9 | SEL | Operational Mode Select (When SEL = 0: A \rightarrow B, When SEL = 1: A \rightarrow C) Do not float this pin. | | 5, 8, 13, 18,
20, 30, 40, 42 | VDD | DC Supply: 1.5 V to 2.0 V | | 1, 4, 10, 14,
17, 19, 21,
39, 41 | GND | Power Ground | | Exposed Pad | - | The exposed pad on the backside of package is internally connected to GND. Externally the pad should also be user-connected to GND. | #### **MAXIMUM RATINGS** | Parameter | Symbol | Rating | Units | |--|------------------|-------------------------|-----------------| | Power Supply Voltage | V _{DD} | -0.5 to 2.5 | V _{DC} | | Input/Output Voltage Range of the Switch (A _N , B _N , C _N) | V _{IS} | −0.5 to V _{DD} | V _{DC} | | Selection Pin Voltages | V _{SEL} | −0.5 to V _{DD} | V _{DC} | | Continuous Current Through One Switch | I _{cc} | ±120 | mA | | Maximum Junction Temperature (Note 1) | T _J | 150 | °C | | Operating Ambient Temperature | T _A | -40 to +85 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | Thermal Resistance, Junction-to-Air | $R_{ hetaJA}$ | 75 | °C/W | | Latch-up Current (Note 2) | I _{LU} | ±100 | mA | | Human Body Model (HBM) ESD Rating (Note 3) | ESD HBM | 7000 | V | | Machine Model (MM) ESD Rating (Note 3) | ESD MM | 400 | V | | Moisture Sensitivity (Note 4) | MSL | Level 1 | - | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. - Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±400 V per JEDEC standard: JESD22-A115 for all pins. - 4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A. # DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V) | Symbol | Pins | Parameters | Conditions (Note 5) | Min. | Typ
(Note 6) | Max. | Units | |-----------------------|---|--|---|---------------------------|-----------------|---------------------------|----------------| | POWER S | UPPLY | | | | | I | | | V_{DD} | V _{DD} , GND | Supply Voltage Range | With respect to GND | 1.5 | 1.8 | 2.0 | V | | I _{DD} | V _{DD} , GND | Quiescent Supply Current | V_{DD} = 2 V, V_{SEL} = GND or V_{DD} | | 200 | 300 | μΑ | | DATA SWI | TCH PERFORM | ANCE | | | | I | , 1 | | V _{IS} | A _N , B _N , C _N | Data Input/Output
Voltage Range | | 0 | | 1.2 | V | | R _{ON} | B _N | On Resistance (B _N) | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$ | | 7.5 | 13 | Ω | | R _{ON} | C _N | On Resistance (C _N) | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$ | | 8.0 | 13 | Ω | | R _{ON(flat)} | B _N | On Resistance Flatness | V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I_{IS} = 15 mA (Note 7) | | 0.1 | 1.24 | Ω | | R _{ON(flat)} | C _N | On Resistance Flatness | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$
$I_{IS} = 15 \text{ mA (Note 7)}$ | | 0.1 | 1.24 | Ω | | ΔR_{ON} | B _N | On Resistance
Matching(B _N) | V _{DD} = 1.5 V, V _{IS} = 0 V,
I _{IS} = 15 mA (Note 7) | | | 0.35 | Ω | | ΔR_{ON} | C _N | On Resistance
Matching(C _N) | V _{DD} = 1.5 V, V _{IS} = 0 V,
I _{IS} = 15 mA (Note 7) | | | 0.35 | Ω | | C _{ON} | A_N to B_N , A_N to C_N | On Capacitance | f = 1 MHz, Switch On, Open
Output | | 2.0 | | pF | | C _{OFF} | A_N to B_N , A_N to C_N | Off Capacitance | f = 1 MHz, Switch Off | | 1.5 | | pF | | I _{ON} | A_N to B_N , A_N to C_N | On Leakage Current | V_{DD} = 2 V, V_{AN} = 0 V, 1.2 V, Switch
On to B_N/C_N , B_N/C_N pins are
unconnected | -1 | | +1 | μΑ | | l _{OFF} | A_N to B_N , A_N to C_N | Off Leakage Current | $\begin{aligned} &V_{DD} = 2 \; V, V_{AN} = 0 \; V, 1.2 \; V, Switch \\ &Off \; to \; B_{N} / C_{N}, V_{BN} / V_{CN} = 1.2 \; V, 0 \; V \end{aligned}$ | -1 | | +1 | μΑ | | LOGIC IN | PUT CHARACTE | ERISTICS (SEL Pin) | | | | | • | | V _{IH} | SEL | Input HIGH Voltage | (Note 7) | 0.65 x
V _{DD} | | V _{DD} | V | | V _{IL} | SEL | Input LOW Voltage | (Note 7) | 0 | | 0.35 x
V _{DD} | ٧ | | V _{IK} | SEL | Clamp Diode Voltage | V _{DD} = Max, I _{SEL} = -18mA | | -0.7 | -1.2 | V | | I _{IH} | SEL | Input HIGH Current | $V_{DD} = Max, V_{SEL} = V_{DD}$ | | | ±5 | μΑ | | I _{IL} | SEL | Input LOW Current | V _{DD} = Max, V _{SEL} = GND | | | ±5 | μΑ | | SWITCHIN | IG CHARACTER | RISTICS | | | | | | | t _{SELON} | SEL, A _N ,
B _N /C _N | Line Enable Time | SEL to A_N , B_N , C_N
$R_L = 50 \Omega$, $C_L = 20 pF$ | | 8.0 | | ns | | tseloff | SEL, A _N ,
B _N /C _N | Line Disable Time | SEL to A_N , B_N , C_N
$R_L = 50 \Omega$, $C_L = 20 pF$ | | 5.0 | | ns | | t _{b-b} | $A_N, B_N/C_N$ | Bit-to-bit skew | Within the same differential pair | | 9.0 | | ps | | t _{ch-ch} | A _N , B _N | Channel-to channel skew | Maximum skew between all channels | | 50 | | ps | ^{5.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading. 7. Guaranteed by design and/or characterization. ### DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V) | Symbol | Pins | Parameters | Conditions (Note 5) | Min. | Typ
(Note 6) | Max. | Units | |------------------|--|-----------------------------|---------------------|------|-----------------|------|-------| | DYNAMIC | ELECTRICAL CH | ARACTERISTICS OVER OF | PERATING RANGE | | | | | | BR | A_N to B_N , A_N to C_N | Signal Bit Rate | | | 5.0 | | Gbps | | D _{IL} | A_N to B_N , A_N to C_N | Differential Insertion Loss | f = 3 GHz | | -2.0 | | dB | | | | | f = 100 MHz | | -0.7 | | dB | | D _{CTK} | A _N , B _N , C _N | Differential Crosstalk | f = 3 GHz | | -30 | | dB | | | | | f = 100 MHz | | -58 | | dB | | D _{ISO} | A _N to B _N ,
A _N to C _N | | f = 3 GHz | | -23 | | dB | | | | | f = 100 MHz | | -58 | | dB | | D _{RL} | A_N to B_N , A_N to C_N | | f = 3 GHz | | -6.0 | | dB | | | | | f = 100 MHz | | -22 | | dB | ^{5.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading. 7. Guaranteed by design and/or characterization. #### TYPICAL OPERATING CHARACTERISTICS Figure 4. PCI Express Eye Diagram at 5 Gbps, 800 mVpp Differential Swing (Minimum Case) Figure 5. Differential Off Isolation 1E+10 Figure 6. Differential Crosstalk Figure 7. Differential Return Loss Figure 8. R_{ON} vs. V_{IS} #### PARAMETER MEASUREMENT INFORMATION Figure 9. Differential Insertion Loss (S_{DD21}) and Differential Return Loss (S_{DD11}) Figure 11. Differential Crosstalk (S_{DD21}) Figure 12. Bit-to-Bit and Channel-to-Channel Skew Figure 13. t_{ON} and t_{OFF} Figure 14. Off State Leakage Figure 15. On State Leakage SCALE 2:1 PIN ONE REFERENCE 0.15 C 0.15 C 0.10 C 0.08 C ⊕ 0.10 C A 42X L 42X b А В C NOTE 3 е **BOTTOM VIEW** e/2 0.10 С 0.05 DETAIL A NOTE 4 # WQFN42 3.5x9, 0.5P CASE 510AP **ISSUE O** AB Ε D TOP VIEW DETAIL B SIDE VIEW D2> E2 **DATE 15 FEB 2010** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL - AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIN | IETERS | | | | |-----|----------|---|--|--|--| | DIM | MIN | MAX | | | | | Α | 0.70 | 0.80 | | | | | A1 | 0.00 | 0.05 | | | | | A3 | | | | | | | b | 0.20 | 0.20 REF
0.20 0.30
3.50 BSC
.95 2.15
9.00 BSC | | | | | D | 3.50 | BSC | | | | | D2 | 1.95 | 2.15 | | | | | Е | 9.00 | BSC | | | | | E2 | 7.45 | 7.65 | | | | | е | 0.50 BSC | | | | | | K | 0.20 | | | | | | L | 0.30 | 0.50 | | | | | L1 | 0.00 | 0.15 | | | | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location Α WL = Wafer Lot YY = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. #### **RECOMMENDED MOUNTING FOOTPRINT** | DOCUMENT NUMBER: | 98AON48316E | Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------|--|-------------|--| | DESCRIPTION: | WQFN42 3.5X9, 0.5P | | PAGE 1 OF 1 | | **DETAIL A** ALTERNATE TERMINAL CONSTRUCTIONS **DETAIL B** ALTERNATE CONSTRUCTION MOLD CMPD **EXPOSED Cu** C SEATING ⊕ 0.10 C A B onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales