Preferred Device ## **Self-Protected FET** with Temperature and **Current Limit** ## 42 V, 2.0 A, Single N-Channel, SOT-223 HDPlus[™] devices are an advanced series of power MOSFETs which utilize ON Semiconductors latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain-to-Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate-to-Source Clamp. #### **Features** - Current Limitation - Thermal Shutdown with Automatic Restart - Short Circuit Protection - I_{DSS} Specified at Elevated Temperature - Avalanche Energy Specified - Slew Rate Control for Low Noise Switching - Overvoltage Clamped Protection - Pb-Free Packages are Available ## **Applications** - Lighting - Solenoids - Small Motors ## MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|-----------------------------------|--------------------|------| | Drain-to-Source Voltage Internally Clamped | V _{DSS} | 42 | V | | | V_{DGR} | 42 | V | | Gate-to-Source Voltage | V _{GS} | ±14 | V | | Continuous Drain Current | I _D | Internally Limited | | | Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2) @ $T_T = 25^{\circ}C$ (Note 3) | P _D | 1.1
1.7
8.9 | W | | Operating Junction and Storage Temperature | T _J , T _{stg} | –55 to
150 | °C | | Single Pulse Drain-to-Source Avalanche Energy ($V_{DD} = 32 \text{ V}, V_G = 5.0 \text{ V}, I_{PK} = 1.0 \text{ A},$ L = 300 mH, $R_{G(ext)} = 25 \Omega$) | E _{AS} | 150 | mJ | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ## ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS}
(Clamped) | R _{DS(ON)} TYP | I _D MAX | |-----------------------------------|-------------------------|--------------------| | 42 V | 165 mΩ @ 10 V | 2.0 A* | *Max current limit value is dependent on input SOT-223 **CASE 318E** STYLE 3 ## MARKING DIAGRAM = Assembly Location = Year = Work Week 5002N = Specific Device Code = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Preferred devices are recommended choices for future use and best overall value. ## **NIF5002N** ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|------------------|-------|------| | Junction-to-Ambient - Steady State (Note 1) | R _{θJA} | 114 | °C/W | | Junction-to-Ambient - Steady State (Note 2) | R _{θJA} | 72 | | | Junction-to-Tab - Steady State (Note 3) | R _{θJT} | 14 | | - Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick). Surface-mounted onto 2" sq. FR4 board (1" sq., 1 oz. Cu, 0.06" thick). Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick). ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25$ °C unless otherwise noted) | Parameter | Symbol | Test Conditio | n | Min | Тур | Max | Unit | |--|-------------------------------------|---|------------------------|------|------|-----|--------| | OFF CHARACTERISTICS | • | | | | • | • | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V 0.V I 40 A | T _J = 25°C | 42 | 46 | 55 | V | | (Note 4) | | $V_{GS} = 0 \text{ V}, I_{D} = 10 \text{ mA}$ | T _J = 150°C | 40 | 45 | 55 | | | Zero Gate Voltage Drain Current | I _{DSS} | I _{DSS} T | T _J = 25°C | | 0.25 | 4.0 | μΑ | | | | $V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}$ | T _J = 150°C | | 1.1 | 20 | | | Gate Input Current | I _{GSSF} | $V_{DS} = 0 V, V_{GS} =$ | 5.0 V | | 50 | 100 | μА | | ON CHARACTERISTICS (Note 4) | | | | | | | | | Gate Threshold Voltage | V _{GS(th)} | $V_{GS} = V_{DS}, I_D = 1$ | 50 μΑ | 1.3 | 1.8 | 2.2 | V | | Gate Threshold Temperature Coefficient | V _{GS(th)} /T _J | | | | 4.0 | 6.0 | -mV/°C | | Static Drain-to-Source On-Resistance | R _{DS(on)} | V 40VI 47A | $T_J = 25^{\circ}C$ | | 165 | 200 | mΩ | | | | $V_{GS} = 10 \text{ V}, I_D = 1.7 \text{ A}$ | T _J = 150°C | | 305 | 400 | | | | | V 50VI 47A | T _J = 25°C | | 195 | 230 | | | | | $V_{GS} = 5.0 \text{ V}, I_D = 1.7 \text{ A}$ | T _J = 150°C | | 360 | 460 | | | | | | T _J = 25°C | | 190 | 230 | | | | | $V_{GS} = 5.0 \text{ V}, I_D = 0.5 \text{ A}$ | T _J = 150°C | | 350 | 460 | | | Source-Drain Forward On Voltage | V_{SD} | V _{GS} = 0 V, I _S = 7.0 A | | | 1.0 | | V | | SWITCHING CHARACTERISTICS | | | | | | | | | Turn-on Time | t _{d(on)} | $V_{GS} = 10 \text{ V}, V_{DD} = 12 \text{ V}, \\ I_{D} = 2.5 \text{ A}, R_{L} = 4.7 \Omega, \\ (10\% V_{in} \text{ to } 90\% I_{D})$ | | | 20 | 30 | μS | | Turn-off Time | t _{d(off)} | | | | 65 | 100 | | | Slew Rate On | dV _{DS} /dt _{on} | $R_L = 4.7 \Omega$, $V_{in} = 0 \text{ to } 10 \text{ V}$, | | | 1.2 | | V/µs | | | 20 011 | $V_{DD} = 12^{\circ} V, 70\% \text{ to}$ | o 50% | | | | , | | Slew-Rate Off | dV _{DS} /dt _{off} | $R_L = 4.7 \Omega, V_{in} = 0 t$ | o 10 V, | | 0.5 | | | | | | $V_{DD} = 12 \text{ V}, 50\% \text{ to}$ | | | | | | | SELF PROTECTION CHARACTERISTIC | T . | ınless otherwise noted) (No | | | | T | | | Current Limit | I _{LIM} | V _{DS} = 10 V, V _{GS} = 5.0 V | T _J = 25°C | 3.1 | 4.7 | 6.3 | Α | | | | 30 1 00 | I _J = 150°C | 2.0 | 3.2 | 4.3 | _ | | | | V _{DS} = 10 V, V _{GS} = 10 V | T _J = 25°C | 3.8 | 5.7 | 7.6 | | | | | | T _J = 150°C | 2.8 | 4.3 | 5.7 | | | Temperature Limit (Turn-off) | T _{LIM(off)} | $V_{GS} = 5.0 \text{ V}$ $V_{GS} = 5.0 \text{ V}$ $V_{GS} = 10 \text{ V}$ | | 150 | 175 | 200 | °C | | Temperature Limit (Circuit Reset) | T _{LIM(on)} | | | 135 | 160 | 185 | | | Temperature Limit (Turn-off) | T _{LIM(off)} | | | 150 | 165 | 185 | | | Temperature Limit (Circuit Reset) | T _{LIM(on)} | V _{GS} = 10 V | | 135 | 150 | 170 | | | ESD ELECTRICAL CHARACTERISTICS | (T _J = 25°C un | less otherwise noted) | | | | | | | Electro-Static Discharge Capability | ESD | Human Body Model (HBM) | | 4000 | | | V | | | 1 | Machine Model (| MM) | 400 | | | | - Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Fault conditions are viewed as beyond the normal operating range of the part. ## **NIF5002N** ## TYPICAL PERFORMANCE CURVES Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage ## **NIF5002N** ## **TYPICAL PERFORMANCE CURVES** 10 V_{GS} = 20 V SINGLE PULSE T_C = 25°C 1 ms 10 Figure 7. Diode Forward Voltage vs. Current Figure 8. Maximum Rated Forward Biased Safe Operating Area Figure 9. Thermal Response ## **ORDERING INFORMATION** | Device | Package | Shipping † | |-------------|----------------------|-----------------------| | NIF5002NT1 | SOT-223 | 1000 / Tape & Reel | | NIF5002NT1G | SOT-223
(Pb-Free) | 1000 / Tape & Reel | | NIF5002NT3 | SOT-223 | 4000 / Tape & Reel | | NIF5002NT3G | SOT-223
(Pb-Free) | 4000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE. - 4. DATUMS A AND B ARE DETERMINED AT DATUM H. - 5. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. - 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61. | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN. | N□M. | MAX. | | | Α | 1.50 | 1.63 | 1.75 | | | A1 | 0.02 | 0.06 | 0.10 | | | Ø | 0.60 | 0.75 | 0.89 | | | b1 | 2.90 | 3.06 | 3.20 | | | U | 0.24 | 0.29 | 0.35 | | | D | 6.30 | 6.50 | 6.70 | | | E | 3.30 | 3.50 | 3.70 | | | е | 2.30 BSC | | | | | L | 0.20 | | | | | L1 | 1.50 | 1.75 | 2.00 | | | He | 6.70 | 7.00 | 7.30 | | | θ | 0* | | 10° | | RECOMMENDED MOUNTING FOOTPRINT | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|------------------|--|-------------| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 1 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ## **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** | STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR | STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE | STYLE 3:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN | STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN | STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE | |---|--|--|--|--| | STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT | STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE | 4. DHAIN STYLE 8: CANCELLED | STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND | STYLE 10:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE | | STYLE 11:
PIN 1. MT 1
2. MT 2
3. GATE
4. MT 2 | STYLE 12:
PIN 1. INPUT
2. OUTPUT
3. NC
4. OUTPUT | STYLE 13:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR | | | # GENERIC MARKING DIAGRAM* A = Assembly Location Y = Year W = Work Week XXXXX = Specific Device Code • Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor,
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------|--|-------------|--| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 2 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales