

SN74AHC157, SN54AHC157 SCLS345L - MAY 1996 - REVISED JULY 2024

SNx4AHC157 Quadruple 2-Line To 1-Line Data Selectors/Multiplexers

1 Features

Texas

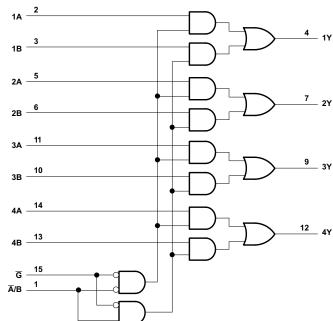
Operating range 2V to 5.5V

INSTRUMENTS

- Latch-up performance exceeds 250mA per JESD 17
- ESD Protection Exceeds JESD 22:
 - 2000V Human-Body Model (A114-A)
 - 200V Machine Model (A115-A
 - 1000V Charged-Device Model (C101)

2 Description

These quadruple 2-line to 1-line data selectors/ multiplexers are designed for 2V to 5.5V V_{CC} operation.


The SNx4AHC157 devices feature a common strobe (\overline{G}) input. When the strobe is high, all outputs are low. When the strobe is low, a 4-bit word is selected from one of two sources and is routed to the four outputs. The devices provide true data.

Device Information

	Device ii	normation	
PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE ⁽³⁾
	D (SOIC, 16)	9.90mm × 6mm	9.90mm × 3.90mm
	DB (SSOP, 16)	6.20mm × 7.8mm	6.20mm × 5.30mm
	N (PDIP, 16)	19.31mm × 9.4mm	19.31mm × 6.35mm
SNx4AHC157	NS (SOP, 16)	5mm × 6.4mm	5mm × 4.4mm
	PW (TSSOP, 16)	5.00mm × 6.4mm	5.00mm × 4.40mm
	DGV (TVSOP, 16)	3.6mm × 6.4mm	3.6mm × 4.4mm
	RGY (VQFN, 16)	4mm × 3.5mm	4mm × 3.5mm

For more information, see Section 10. (1)

- The package size (length × width) is a nominal value and (2) includes pins, where applicable.
- (3)The body size (length × width) is a nominal value and does not include pins.

Pin numbers shown are for the D, DB, DGV, J, N, NS, PW, RGY, and W packages.

Logic Diagram (Positive Logic)

Table of Contents

1 Features	1
2 Description	1
3 Pin Configuration and Functions	3
4 Specifications	5
4.1 Absolute Maximum Ratings	<mark>5</mark>
4.2 ESD Ratings	
4.3 Recommended Operating Conditions	<mark>5</mark>
4.4 Thermal Information	6
4.5 Electrical Characteristics	6
4.6 Switching Characteristics, V _{CC} = 3.3V ± 0.3V	6
4.7 Switching Characteristics, V _{CC} = 5V ± 0.5V	7
4.8 Noise Characteristics	7
4.9 Operating Characteristics	7
4.10 Typical Characteristics	<mark>8</mark>
5 Parameter Measurement Information	
6 Detailed Description	10

6.1 Functional Block Diagram	10
6.2 Device Functional Modes	10
7 Application and Implementation	
7.1 Power Supply Recommendations	11
7.2 Layout	11
8 Device and Documentation Support	
8.1 Documentation Support (Analog)	12
8.2 Receiving Notification of Documentation Updates	
8.3 Support Resources	12
8.4 Trademarks	
8.5 Electrostatic Discharge Caution	12
8.6 Glossary	
9 Revision History	
10 Mechanical, Packaging, and Orderable	
Information	13

3 Pin Configuration and Functions

A/B 16 V_{CC} 15 G 1A [2 1B 3 14 4A ſ 1Y 4 13 4B 2A 4Y C 5 12 2B 11 3A 6 2Y [10 3B 7 GND Г 8 9 3Y

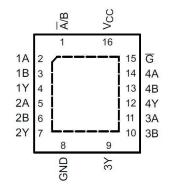
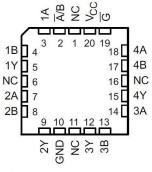



Figure 3-1. SN54AHC157 J or W Package, SN74AHC157 D, DB, DGV, N, NS, or, PW Package (Top View)

Figure 3-2. SN74AHC157 RGY Package, (Top View)

NC - No internal connection

Figure 3-3. SN54AHC157 FK Package, (Top View)

Table 3-1. Pin Functions

	PIN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		DESCRIPTION
Ā/B	1	I	Address select
1A	2	I	Channel 1, data input A
1B	3	I	Channel 1, data input B
1Y	4	0	Channel 1, data output
2A	5	I	Channel 2, data input A
2B	6	I	Channel 2, data input B
2Y	7	0	Channel 2, data output
GND	8	G	Ground
3Y	9	0	Channel 3, data output
3B	10	I	Channel 3, data input B
3A	11	I	Channel 3, data input A
4Y	12	0	Channel 4, data output
4B	13	I	Channel 4, data input B
4A	14	I	Channel 4, data input A
G	15	I	Output strobe, active low
V _{CC}	16	Р	Positive supply
Thermal pad	2)	_	The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply.

(1) (2) Signal Types: I = Input, O = Output, I/O = Input or Output, P = Power, G = Ground.

WBQB package only.

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	7	V	
V _I ⁽²⁾	Input voltage range		-0.5	7	V	
V _O ⁽²⁾	Output voltage range	Dutput voltage range				
I _{IK}	Input clamp current	(V ₁ < 0)		-20	mA	
I _{ОК}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA	
I _O	Continuous output current	$(V_{O} = 0 \text{ to } V_{CC})$		±25	mA	
	Continuous current through $V_{CC} \mbox{ or } GND$		±50	mA		
T _{stg}	Storage temperature range		-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

4.2 ESD Ratings

_		U				
				VALUE	UNIT	
		Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	±2000	V	
	V (ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101	±1000	v	

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			SN54AH	C157	SN74AH0	2157	UNIT	
			MIN	MAX	MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	2	5.5	V	
		V _{CC} = 2 V	1.5		1.5			
V _{IH}	High-level input voltage	V _{CC} = 3V	2.1		2.1		V	
		V _{CC} = 5.5 V	3.85		3.85			
		V _{CC} = 2 V		0.5		0.5		
V _{IL}	Low-level Input voltage	V _{CC} = 3 V		0.9		0.9	V	
		V _{CC} = 5.5 V		1.65		1.65		
VI	Input voltage		0	5.5	0	5.5	V	
Vo	Output voltage		0	V _{CC}	0	V _{CC}	V	
		V _{CC} = 2 V		-0.05		-0.05		
I _{OH}	High-level output current	V _{CC} = 3.3 V ± 0.3 V		-4		-4	μA	
		V _{CC} = 5 V ± 0.5 V		-8		-8		
		V _{CC} = 2 V		0.05		0.05		
I _{OL}	Low-level output current	V _{CC} = 3.3 V ± 0.3 V		4		4	μA	
		V _{CC} = 5 V ± 0.5 V		8		8		
A+/A.,	Input Transition rise or fall rate	V _{CC} = 3.3 V ± 0.3 V		100		100	20/1	
Δt/Δv	Input Transition rise or fall rate	V _{CC} = 5 V ± 0.5 V		20		20	ns/V	
T _A	Operating free-air temperature		-55	125	-40	125	°C	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4.4 Thermal Information

		SNx4AHC157								
THERMAL METRIC ⁽¹⁾		D	DB	DGV	N	NS	PW	RGY	UNIT	
	16									
R _{θJA}	Junction-to-ambient thermal resistance	93.8	82	120	67	64	135.9	52.9	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

4.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

						T _A = -55°		T _A = -40° 85°C		T _A = -40° 125°(
PARAMETER	TEST CONDITIONS	V _{cc}	T _A = 25°C			125°C		05 0	,	Recommended		UNIT
						SN54AH	C157	SN74AH	C157	SN74AH	C157	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		2 V	1.9	2		1.9		1.9		1.9		
	I _{OH} = –50 μA	3 V	2.9	3		2.9		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		3.8		
	I _{OL} = 50 μA	2 V			0.1		0.1		0.1		0.1	
		3 V			0.1		0.1		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1		0.1		0.1	V
	I _{OH} = 4 mA	3 V			0.36		0.5		0.44		0.5	
	I _{OH} = 8 mA	4.5 V			0.36		0.5		0.44		0.5	
l,	V ₁ = 5.5 V or GND	0 V to 5.5 V			±0.1		±1 ⁽¹⁾		±1		±1	μA
Icc	$V_{I} = V_{CC} \text{ or } \qquad I_{O} = 0$ GND,	5.5 V			4		40		40		40	μA
Ci	V _I = V _{CC} or GND	5 V		2	10				10			pF

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested at VCC = 0 V.

4.6 Switching Characteristics, V_{CC} = 3.3V ± 0.3V

over recommended operating free-air temperature range, $V_{CC} = 3.3V \pm 0.3V$ (unless otherwise noted) (see Load Circuit And Voltage Waveforms)

				T 1	T₄ = 25°C		T _A = –55°C TO 125°C		0°C TO °C	T _A = -40 125		UNIT
PARAMETER	FROM (INPUT)	TO (OUTPUT)								Recomm		
	(SN54AHC157		SN74A	HC157	SN74A	HC157	
				TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	Y	C _L = 15pF	6.2 ⁽¹⁾	9.7 <mark>(1)</mark>	1 ⁽¹⁾	11.5 <mark>(1)</mark>	1	11.5	1	11.5	20
t _{PHL}	AUB	ſ	CL - TSPF	6.2 ⁽¹⁾	9.7 <mark>(1)</mark>	1 ⁽¹⁾	11.5 <mark>(1)</mark>	1	11.5	1	11.5	ns
t _{PLH}	Ā/ B	Y	C _L = 15pF	8.4 <mark>(1)</mark>	13.2 <mark>(1)</mark>	1 ⁽¹⁾	15.5 <mark>(1)</mark>	1	15.5	1	15.5	20
t _{PHL}		T T	CL = 13pi	8.4 <mark>(1)</mark>	13.2 <mark>(1)</mark>	1 ⁽¹⁾	15.5 <mark>(1)</mark>	1	15.5	1	15.5	ns
t _{PLH}	G	Y	C _L = 15pF	8.7 <mark>(1)</mark>	13.6 <mark>(1)</mark>	1 ⁽¹⁾	16 <mark>(1)</mark>	1	16	1	16	ns
t _{PHL}	G	1	CL = 13pi	8.7 <mark>(1)</mark>	13.6 ⁽¹⁾	1 ⁽¹⁾	16 <mark>(1)</mark>	1	16	1	16	115
t _{PLH}	A or P	v	C = 50 pc	8.7	13.2	1	15	1	15	1	15	20
t _{PHL}	A or B Y	T	C _L = 50pF	8.7	13.2	1	15	1	15	1	15	ns
t _{PLH}	Ā/ B	Y	$C_{\rm r} = 50 \rm pE$	10.9	16.7	1	19	1	19	1	19	ns
t _{PHL}	A/ B	r r	C _L = 50pF	10.9	16.7	1	19	1	19	1	19	115

over recommended operating free-air temperature range, $V_{CC} = 3.3V \pm 0.3V$ (unless otherwise noted) (see Load Circuit And Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C		T _A = -55°C TO 125°C SN54AHC157		T _A = -40°C TO 85°C SN74AHC157		$T_{A} = -40^{\circ}C \text{ TO}$ $125^{\circ}C$ Recommended SN74AHC157		UNIT
	(INFOT)											
				TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	G	×	С _L = 50рF	11.2	17.1	1	19.5	1	19.5	1	19.5	n 0
t _{PHL}	3		0L - 30PP	11.2	17.1	1	19.5	1	19.5	1	19.5	ns

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

4.7 Switching Characteristics, $V_{CC} = 5V \pm 0.5V$

over recommended operating free-air temperature range, $V_{CC} = 5V \pm 0.5V$ (unless otherwise noted) (see Load Circuit And Voltage Waveforms)

			LOAD CAPACITANCE	_		T _A = –55°C TO 125°C		$T_A = -4$		T _A = -40°C TO 125°C		
PARAMETER	FROM (INPUT)	TO (OUTPUT)		T _A = 25°C		125 C		85°C		Recommended		UNIT
	(INPOT)	(001P01)	CAPACITANCE			SN54AHC157		SN74A	HC157	SN74A	HC157	
				TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	Y	C ₁ = 15pF	4.1 ⁽¹⁾	6.4 <mark>(1)</mark>	1 ⁽¹⁾	7.5 <mark>(1)</mark>	1	7.5	1	7.5	ns
t _{PHL}	AUD		CL = 13pi	4.1 ⁽¹⁾	6.4 <mark>(1)</mark>	1 ⁽¹⁾	7.5 <mark>(1)</mark>	1	7.5	1	7.5	115
t _{PLH}	Ā/ B	Y	C ₁ = 15pF	5.3 <mark>(1)</mark>	8.1 <mark>(1)</mark>	1 ⁽¹⁾	9.5 <mark>(1)</mark>	1	9.5	1	9.5	ns
t _{PHL}	A/ B	1		5.3 <mark>(1)</mark>	8.1 <mark>(1)</mark>	1 ⁽¹⁾	9.5 <mark>(1)</mark>	1	9.5	1	9.5	113
t _{PLH}	G	Y	C ₁ = 15pF	5.6 <mark>(1)</mark>	8.6 <mark>(1)</mark>	1 ⁽¹⁾	10 ⁽¹⁾	1	10	1	10	ns
t _{PHL}	G	Y		5.6 <mark>(1)</mark>	8.6 <mark>(1)</mark>	1 ⁽¹⁾	10 ⁽¹⁾	1	10	1	10	115
t _{PLH}	A or B	Y	C ₁ = 50pF	5.6 <mark>(1)</mark>	8.4 <mark>(1)</mark>	1 ⁽¹⁾	9.5 <mark>(1)</mark>	1	9.5	1	9.5	ns
t _{PHL}	AUB	r	CL - SOPF	5.6 <mark>(1)</mark>	8.4 <mark>(1)</mark>	1 ⁽¹⁾	9.5 <mark>(1)</mark>	1	9.5	1	9.5	115
t _{PLH}	Ā/ B	v	C ₁ = 50pF	6.8 <mark>(1)</mark>	10.1 <mark>(1)</mark>	1 ⁽¹⁾	11.5 <mark>(1)</mark>	1	11.5	1	11.5	n 0
t _{PHL}	AVB	Y	CL - SOPF	6.8 <mark>(1)</mark>	10.1 <mark>(1)</mark>	1 ⁽¹⁾	11.5 <mark>(1)</mark>	1	11.5	1	11.5	ns
t _{PLH}	G N	Y	C = 50 pc	7.1 ⁽¹⁾	10.6 <mark>(1)</mark>	1 ⁽¹⁾	12 <mark>(1)</mark>	1	12	1	12	
t _{PHL}	G	r r	C _L = 50pF	7.1 ⁽¹⁾	10.6 <mark>(1)</mark>	1 ⁽¹⁾	12 ⁽¹⁾	1	12	1	12	ns

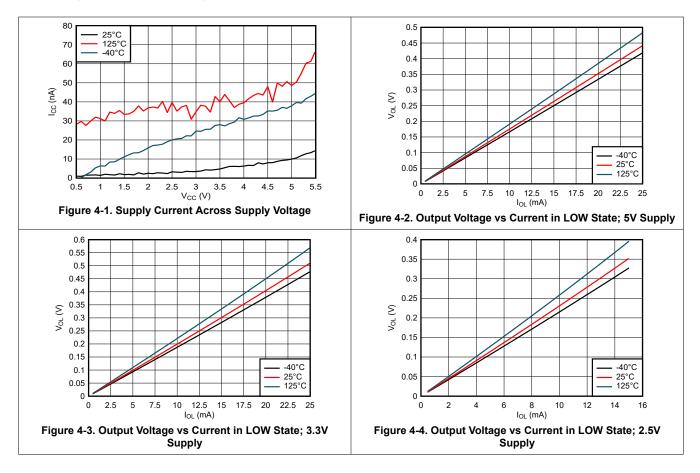
4.8 Noise Characteristics

 $V_{CC} = 5 \text{ V}, C_{L} = 50 \text{ pF}, T_{A} = 25^{\circ}\text{C}^{(1)}$

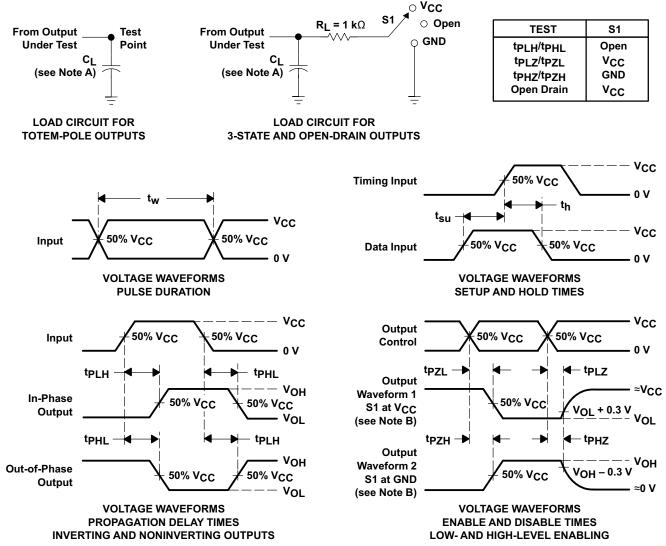
	PARAMETER	SN7			
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}			0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}			-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.8		V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

(1) Characteristics are for surface-mount packages only.

4.9 Operating Characteristics


 $V_{CC} = 5 V, T_A = 25^{\circ}C$

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	11	pF


4.10 Typical Characteristics

 $T_A = 25^{\circ}C$ (unless otherwise noted)

5 Parameter Measurement Information

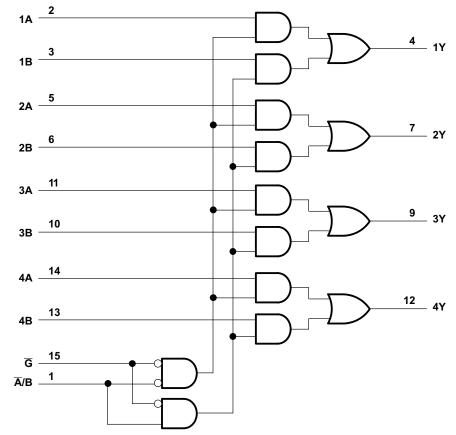

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 5-1. Load Circuit And Voltage Waveforms

6 Detailed Description

6.1 Functional Block Diagram

Pin numbers shown are for the D, DB, DGV, J, N, NS, PW, RGY, and W packages.

Figure 6-1. Logic Diagram (Positive Logic)

6.2 Device Functional Modes

	Table 6-1. Function Table										
	OUTPUT										
G	G Ā/B A B										
Н	Х	Х	Х	L							
L	L	L	Х	L							
L	L	Н	Х	н							
L	Н	Х	L	L							
L	Н	Х	Н	Н							

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 4.3 table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1µf is recommended; if there are multiple V_{CC} pins, then 0.01µf or 0.022 µf is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1µf and a 1µf are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Layout Diagram are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

7.2.2 Layout Example

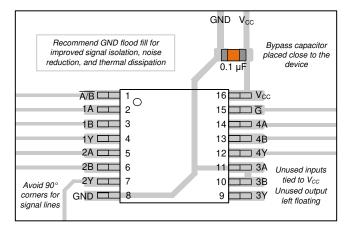


Figure 7-1. Example Layout for the SNx4AHC157

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	PRODUCT FOLDER SAMPLE & BUY		TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54AHC157	Click here	Click here	Click here	Click here	Click here
SN74AHC157	Click here	Click here	Click here	Click here	Click here

Table 8-1. Related Links

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision K (April 2024) to Revision L (July 2024)	Page
•	Updated thermal values for RθJA: D = 73 to 93.8, RGY = 39 to 52.9, all values in °C/W	6

Changes from Revision J (June 2013) to Revision K (April 2024)

|--|

•	Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical
	Characteristics, Device Functional Modes, Application and Implementation section, Device and
	Documentation Support section, and Mechanical, Packaging, and Orderable Information section
•	Changed I _{OH} maximums from -50 mA to -0.05 µA

- Changed mA (milliamps) to μA (microamps) for I_{OH} and I_{OL} on Recommended Operating Conditions table....5
- Changed I_{OL} maximums from 50 mA to 0.05 µA5

• Updated thermal values for PW package from RθJA = 108 to 135.9, all values in °C/W......6

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9764201Q2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9764201Q2A SNJ54AHC 157FK	Samples
5962-9764201QEA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9764201QE A SNJ54AHC157J	Samples
5962-9764201QFA	ACTIVE	CFP	W	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9764201QF A SNJ54AHC157W	Samples
SN74AHC157D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-40 to 125	AHC157	
SN74AHC157DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA157	Samples
SN74AHC157DGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA157	Samples
SN74AHC157DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC157	Samples
SN74AHC157N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74AHC157N	Samples
SN74AHC157NSR	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC157	Samples
SN74AHC157PW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 125	HA157	
SN74AHC157PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	HA157	Samples
SN74AHC157PWRG3	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	HA157	Samples
SN74AHC157RGYR	ACTIVE	VQFN	RGY	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA157	Samples
SNJ54AHC157FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9764201Q2A SNJ54AHC 157FK	Samples
SNJ54AHC157J	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9764201QE A SNJ54AHC157J	Samples
SNJ54AHC157W	ACTIVE	CFP	W	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9764201QF A	Samples

5-Dec-2024

Orderable Device	Status	Package Type	Package Drawing	Pins Pack	-	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		(2)	(6)	(3)		(4/5)	
									SNJ54AHC157W	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

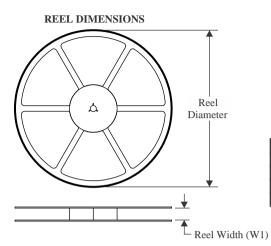
OTHER QUALIFIED VERSIONS OF SN54AHC157, SN74AHC157 :

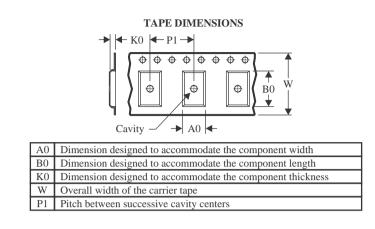
• Catalog : SN74AHC157

• Automotive : SN74AHC157-Q1, SN74AHC157-Q1

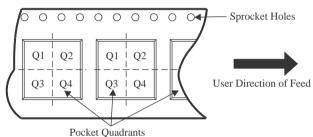
• Military : SN54AHC157

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications

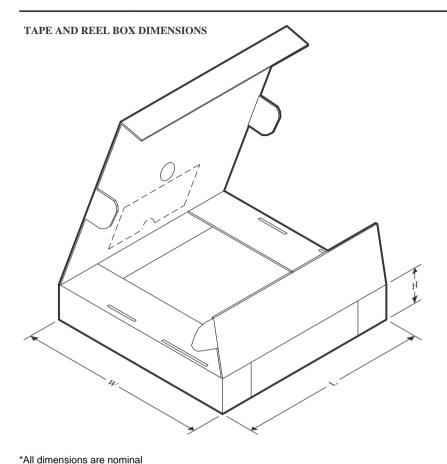


Texas


STRUMENTS

TAPE AND REEL INFORMATION

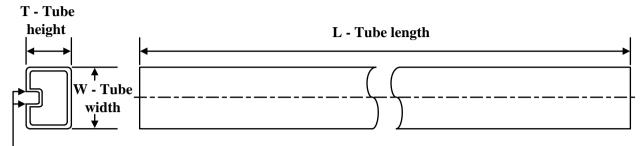
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


All dimensions are nominal Device	Baakaga	Package	Dine	SPQ	Reel	Reel	A0	В0	К0	P1	w	Pin1
Device	Туре	Drawing		354	Diameter (mm)		(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
SN74AHC157DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHC157DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74AHC157DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHC157DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHC157DR	SOIC	D	16	2500	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1
SN74AHC157NSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AHC157PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC157PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC157PWRG3	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC157RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

28-Mar-2025


		1					· · · · · · · · · · · · · · · · · · ·
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC157DBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74AHC157DGVR	TVSOP	DGV	16	2000	356.0	356.0	35.0
SN74AHC157DR	SOIC	D	16	2500	353.0	353.0	32.0
SN74AHC157DR	SOIC	D	16	2500	353.0	353.0	32.0
SN74AHC157DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74AHC157NSR	SOP	NS	16	2000	356.0	356.0	35.0
SN74AHC157PWR	TSSOP	PW	16	2000	353.0	353.0	32.0
SN74AHC157PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74AHC157PWRG3	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74AHC157RGYR	VQFN	RGY	16	3000	360.0	360.0	36.0

TEXAS INSTRUMENTS

www.ti.com

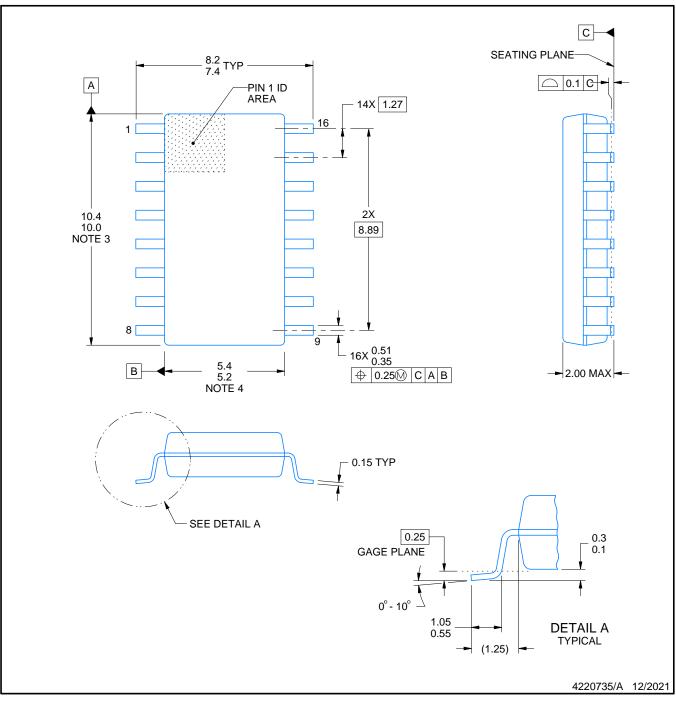
28-Mar-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9764201Q2A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-9764201QFA	W	CFP	16	25	506.98	26.16	6220	NA
SN74AHC157N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC157N	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54AHC157FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54AHC157W	W	CFP	16	25	506.98	26.16	6220	NA


NS0016A

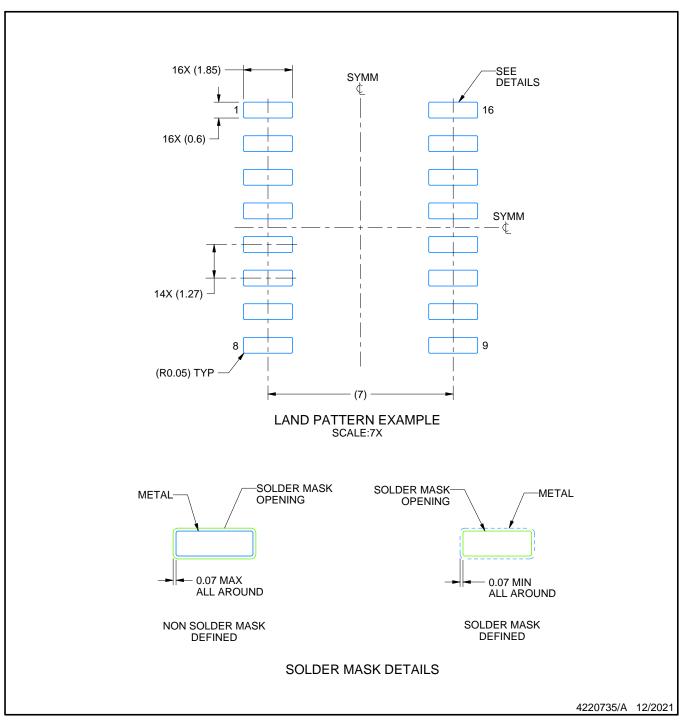
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

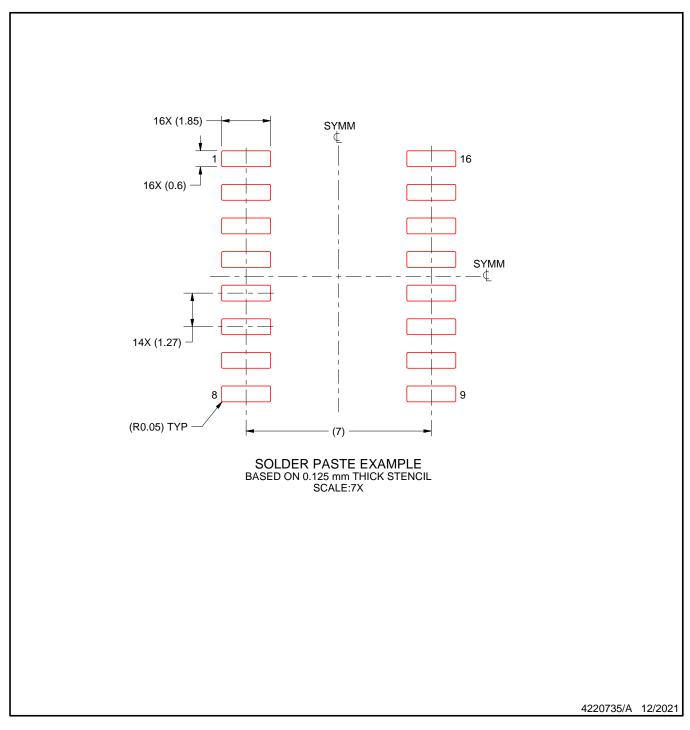
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

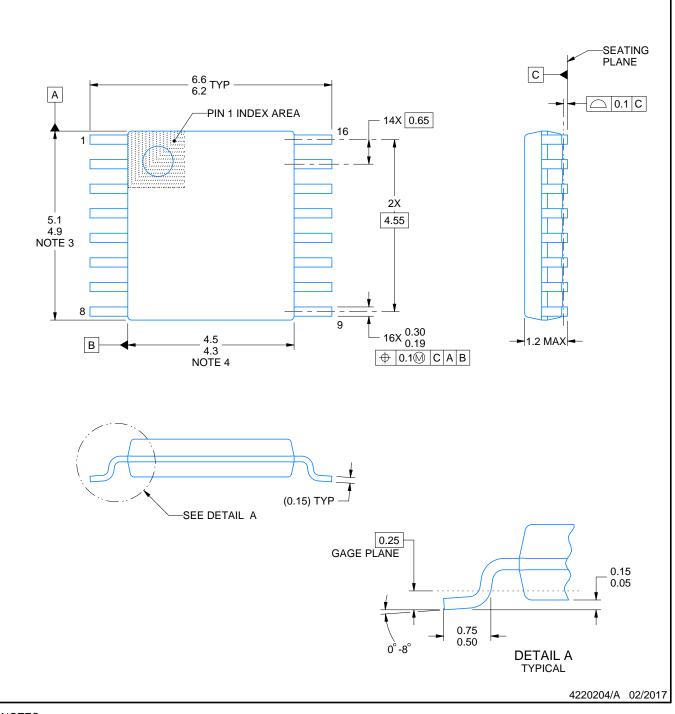
8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.


PW0016A

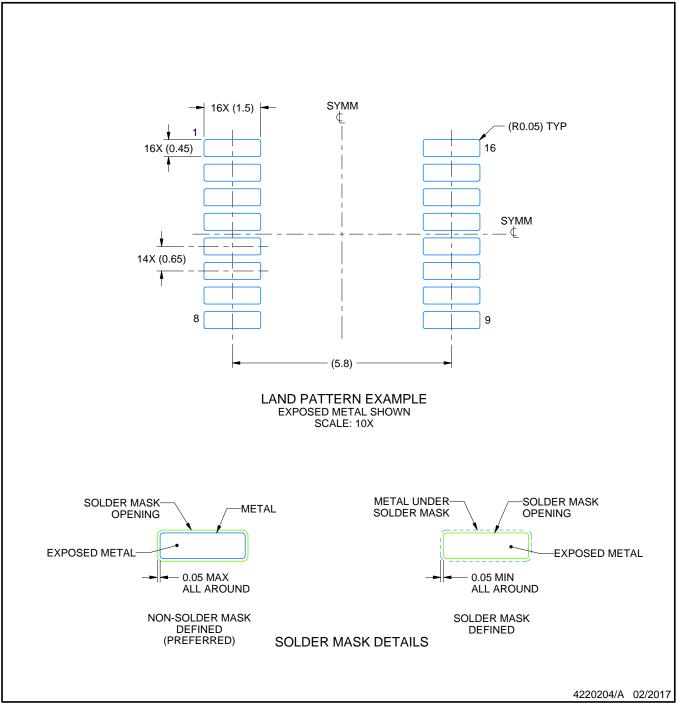
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

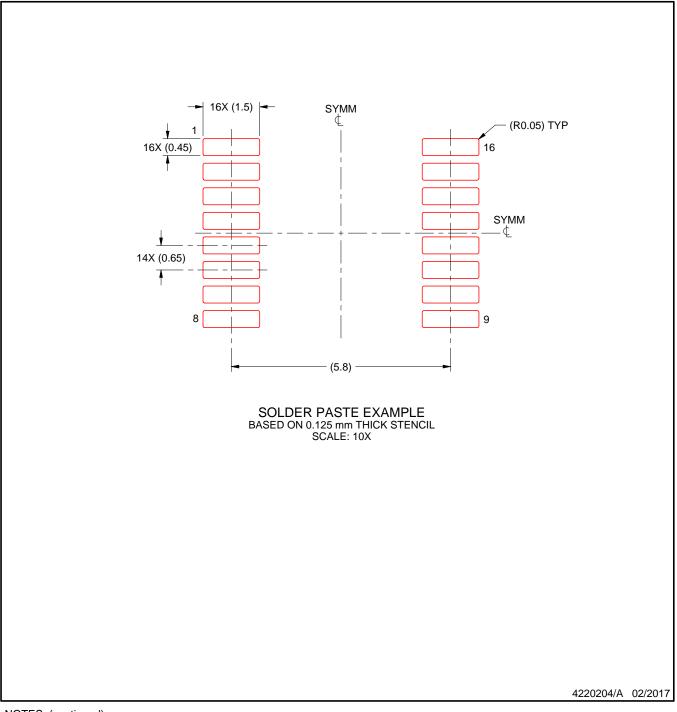
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

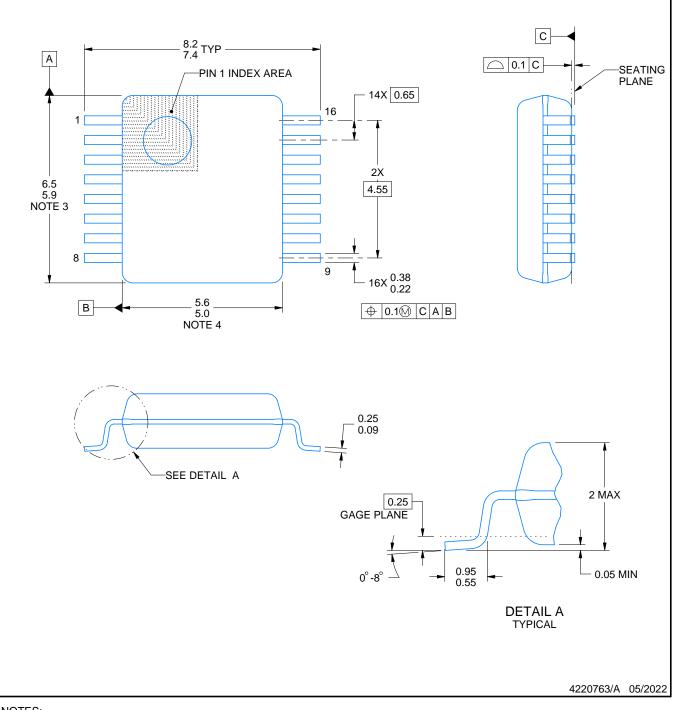
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DB0016A

PACKAGE OUTLINE

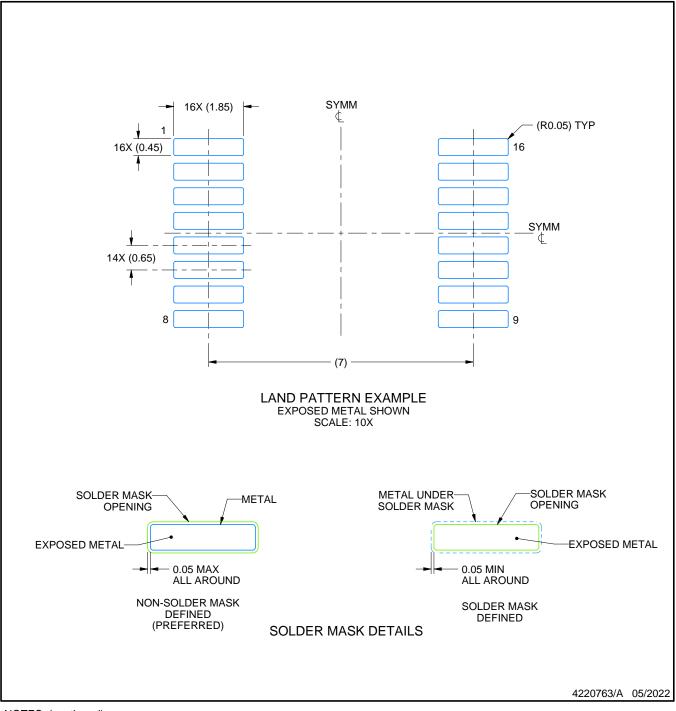
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0016A

EXAMPLE BOARD LAYOUT

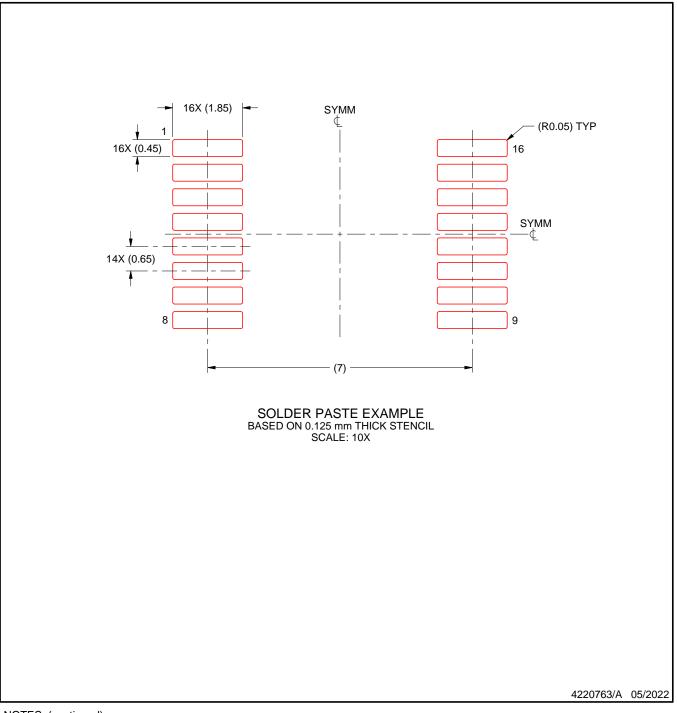
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0016A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

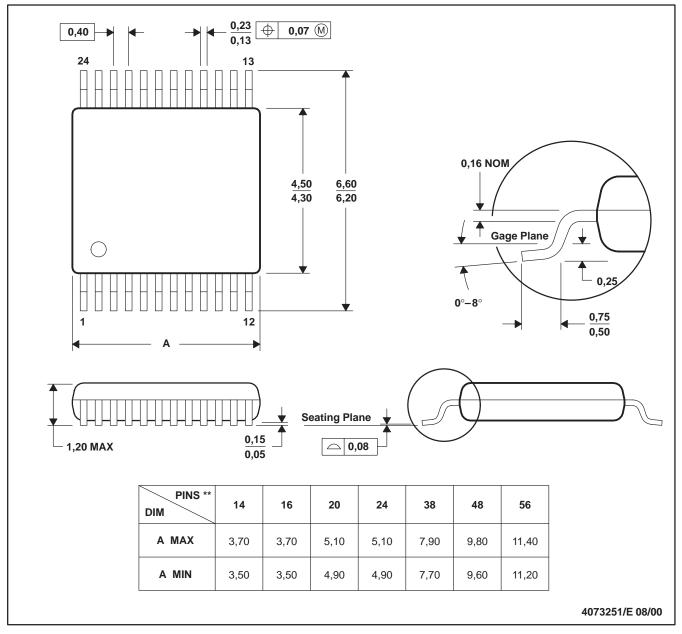
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

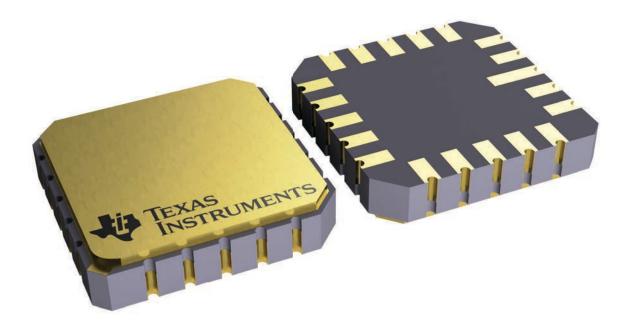
14/16/20/56 Pins – MO-194

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

FK 20


8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

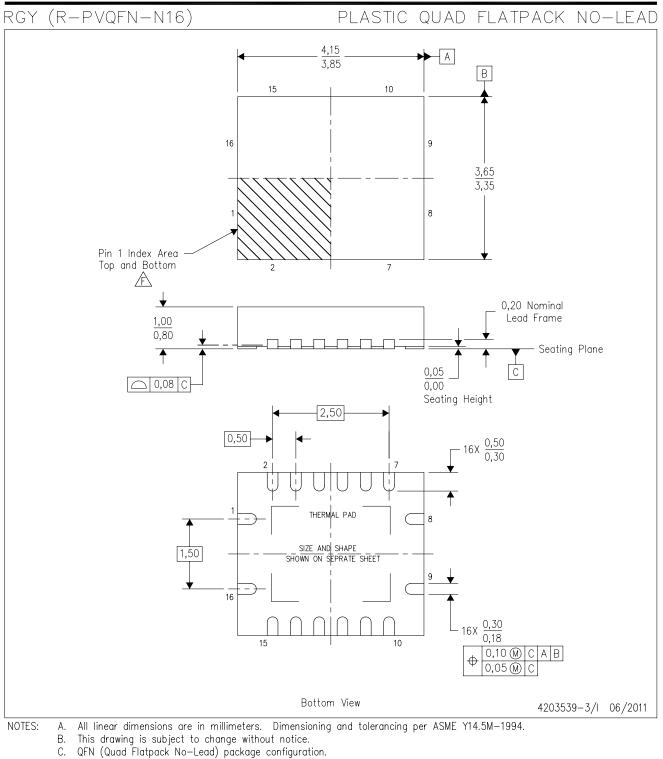
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Ε. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated