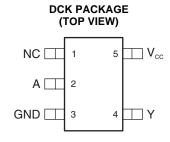
www.ti.com


LOW POWER, 1.8/2.5/3.3-V INPUT, 3.3-V CMOS OUTPUT, SINGLE SCHMITT-TRIGGER BUFFER GATE

Check for Samples: SN74AUP1T50

FEATURES

- Single-Supply Voltage Translator
- Output Level Up to Supply V_{CC} CMOS Level
 - 1.8 V to 3.3 V (at $V_{CC} = 3.3 \text{ V}$)
 - 2.5 V to 3.3 V (at $V_{CC} = 3.3 \text{ V}$)
 - 1.8 V to 2.5 V (at $V_{CC} = 2.5 \text{ V}$)
 - 3.3 V to 2.5 V (at $V_{CC} = 2.5 \text{ V}$
- Schmitt-Trigger Inputs Reject Input Noise and Provide Better Output Signal Integrity
- I_{off} Supports Partial Power Down (V_{CC} = 0 V)
- Very Low Static Power Consumption: 0.1 μA
- Very Low Dynamic Power Consumption: 0.9 μA
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Pb-Free Packages Available: SC-70 (DCK)
 2 x 2.1 x 0.65 mm (Height 1.1 mm)

- More Gate Options Available at www.ti.com/littlelogic
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The SN74AUP1T50 performs the Boolean function Y = A with designation for logic-level translation applications with output referenced to supply V_{CC} .

AUP technology is the industry's lowest-power logic technology designed for use in extending battery-life in operating. All input levels that accept 1.8-V LVCMOS signals, while operating from either a single 3.3-V or 2.5-V V_{CC} supply. This product also maintains excellent signal integrity (see Figure 1 and Figure 2).

The wide V_{CC} range of 2.3 V to 3.6 V allows the possibility of switching output level to connect to external controllers or processors.

Schmitt-trigger inputs ($\Delta V_T = 210 \text{ mV}$ between positive and negative input transitions) offer improved noise immunity during switching transitions, which is especially useful on analog mixed-mode designs. Schmitt-trigger inputs reject input noise, ensure integrity of output signals, and allow for slow input signal transition.

 I_{off} is a feature that allows for powered-down conditions ($V_{CC} = 0$ V) and is important in portable and mobile applications. When $V_{CC} = 0$ V, signals in the range from 0 V to 3.6 V can be applied to the inputs and outputs of the device. No damage occurs to the device under these conditions.

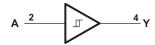
The SN74AUP1T50 is designed with optimized current-drive capability of 4 mA to reduce line reflections, overshoot, and undershoot caused by high-drive outputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTION TABLE

INPUTS (Lower Level Input)	OUTPUT (V _{CC} CMOS)
Α	Y
Н	Н
L	L


Supply $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V } (2.5 \text{ V})$

V _{T+} max	INPUTS $V_{T+} \max = V_{IH} \min$ $V_{T-} \min = V_{IL} \max$				
Α	A B				
V _{IH} =	V _{IH} = 1.1 V				
$V_{IL} = 0$	0.35 V	V _{OL} = 0.45 V			

Supply $V_{CC} = 3 \text{ V to } 3.6 \text{ V } (3.3 \text{ V})$

INP V _{T+} max V _T .min =	OUTPUT CMOS				
Α	A B				
V _{IH} =	V _{IH} = 1.19 V				
V _{IL} =	0.5 V	$V_{OL} = 0.45 \text{ V}$			

LOGIC DIAGRAM (SCHMITT-TRIGGER BUFFER GATE)

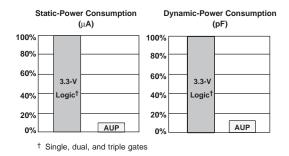


Figure 1. AUP – The Lowest-Power Family

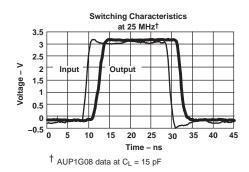


Figure 2. Excellent Signal Integrity

Submit Documentation Feedback

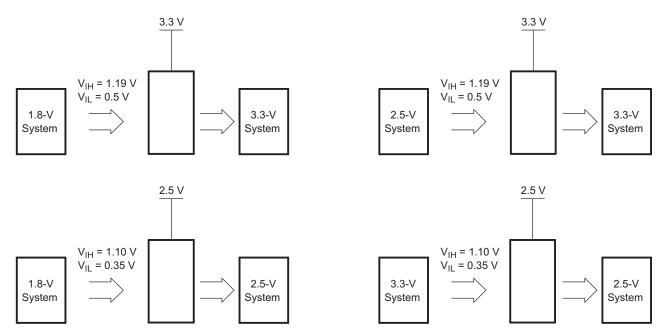


Figure 3. Typical Design Examples

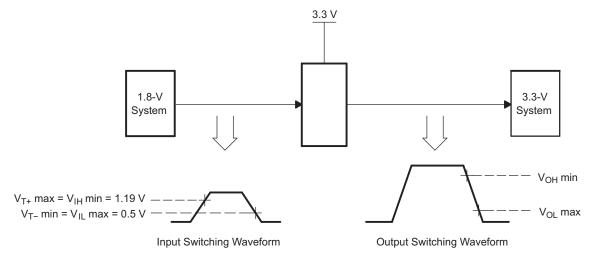


Figure 4. Switching Thresholds for 1.8-V to 3.3-V Translation

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
V_{I}	Input voltage range (2)		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-impedance or	power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low state (2)	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
θ_{JA}	Package thermal impedance (3)	DCK package		259	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage		2.3	3.6	V	
V_{I}	Input voltage		0	3.6	V	
Vo	Output voltage		0	V_{CC}	V	
		V _{CC} = 2.3 V		-3.1	A	
I _{OH}	High-level output current	V _{CC} = 3 V		-4	mA	
	Lavidaval autovit avenuet	V _{CC} = 2.3 V		3.1	A	
I _{OL}	Low-level output current	V _{CC} = 3 V		4	mA	
T _A	Operating free-air temperature		-40	85	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

Submit Documentation Feedback

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A =	25°C	T _A = -40 to 85°0	°C	UNIT	
			MIN	TYP MAX	MIN	MAX		
V_{T+}		2.3 V to 2.7 V	0.6	1.1	0.6	1.1		
Positive-going input threshold voltage		3 V to 3.6 V	0.75	1.16	0.75	1.19	V	
V_{T-}		2.3 V to 2.7 V	0.35	0.6	0.35	0.6		
Negative-going input threshold voltage		3 V to 3.6 V	0.5	0.85	0.5	0.85	V	
ΔV_T		2.3 V to 2.7 V	0.23	0.6	0.1	0.6		
Hysteresis (V _{T+} – V _{T-})		3 V to 3.6 V	0.25	0.56	0.15	0.56	V	
	$I_{OH} = -20 \mu A$	2.3 V to 3.6 V	V _{CC} - 0.1		V _{CC} - 0.1			
	$I_{OH} = -2.3 \text{ mA}$	2.3 V	2.05		1.97			
V_{OH}	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9		1.85		V	
	$I_{OH} = -2.7 \text{ mA}$	3 V	2.72		2.67			
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55			
	$I_{OL} = 20 \mu A$	2.3 V to 3.6 V		0.1		0.1		
	I _{OL} = 2.3 mA	2.3 V		0.31		0.33		
V_{OL}	I _{OL} = 3.1 mA	2.5 V		0.44		0.45	V	
	I _{OL} = 2.7 mA	3 V		0.31		0.33		
	I _{OL} = 4 mA	3 V		0.44		0.45		
I _I All inputs	V _I = 3.6 V or GND	0 V to 3.6 V		0.1		0.5	μΑ	
I _{off}	V_I or $V_O = 0$ V to 3.6 V	0 V		0.1		0.5	μA	
ΔI_{off}	V_I or $V_O = 3.6 \text{ V}$	0 V to 0.2 V		0.2		0.5	μΑ	
I _{CC}	$V_I = 3.6 \text{ V or GND}, I_O = 0$	2.3 V to 3.6 V		0.5		0.9	μΑ	
Δlaa	One input at 0.3 V or 1.1 V, Other inputs at 0 or V_{CC} , $I_{O} = 0$	2.3 V to 2.7 V				4	4 μΑ	
Δl _{CC}	One input at 0.45 V or 1.2 V, Other inputs at 0 or V_{CC} , $I_{O} = 0$	3 V to 3.6 V				12		
C _i	$V_I = V_{CC}$ or GND	3.3 V		1.5			pF	
Co	$V_O = V_{CC}$ or GND	3.3 V		3			pF	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_I = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	TO (OUTPUT)		CL	Т,	₄ = 25°	С	T _A = -	-40°C 5°C	UNIT
	(INPUT)			MIN	TYP	MAX	MIN	MAX		
t _{pd}		A Y	5 pF	1.8	2.3	2.9	0.5	6.8		
			10 pF	2.3	2.8	3.4	1	7.9	20	
	^		15 pF	2.6	3.1	3.8	1	8.7	ns	
			30 pF	3.8	4.4	5.1	1.5	10.8		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_I = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	TO (OUTPUT)	C _L	T	λ = 25°C		T _A = -	40°C 5°C	UNIT
	(INPUT)	(001F01)	_	MIN	TYP	MAX	MIN	MAX	
t _{pd} A		×	5 pF	1.8	2.3	3.1	0.5	6	
	^		10 pF	2.2	2.8	3.5	1	7.1	
	Y	15 pF	2.6	3.2	5.2	1	7.9	ns	
			30 pF	3.7	4.4	5.2	1.5	10	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_I = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	= = = = = = = = = = = = = = = = = = = =	CL	T _A = 25°C			T _A = -	UNIT				
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX				
		5 pF	2	2.7	3.5	0.5	5.5	.5				
		.,	V	V	V	10 pF	2.4	3.1	3.9	1	6.5	
t _{pd} A	Y 	15 pF	2.8	3.5	4.3	1	7.4	ns				
			30 pF	4	4.7	5.5	1.5	9.5				

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_I = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	TO (OUTPUT)	CL	T,	_{\(\)} = 25°C	;	T _A = -	40°C 5°C	UNIT
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX	
		Y	5 pF	1.6	2	2.5	0.5	8	
	^		10 pF	2	2.4	2.9	1	8.5	
t _{pd} A	A		15 pF	2.3	2.8	3.3	1	9.1	ns
			30 pF	3.4	3.9	4.4	1.5	9.8	

SWITCHING CHARACTERISTICS

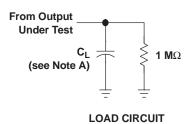
over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, V_I = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	.	CL	T _A = 25°C			T _A = -	UNIT
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX
t _{pd} A	Y	5 pF	1.6	1.9	2.4	0.5	5.3	
		10 pF	2	2.3	2.7	1	6.1	
		15 pF	2.3	2.7	3.1	1	6.8	ns
		30 pF	3.4	3.8	4.2	1.5	8.5	

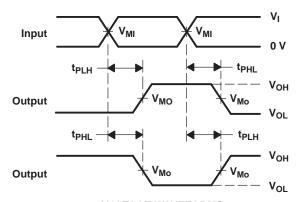
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, V_I = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 5)

PARAMETER	FROM	TO (OUTPUT)	-	CL	Т,	_A = 25°C	,	T _A = -	40°C 5°C	UNIT	
(INPUT	(INPUT)		-	MIN	TYP	MAX	MIN	MAX			
t _{pd} A	V	Y	5 pF	1.6	2.1	2.7	0.5	4.7			
			10 pF	2	2.4	3	1	5.7			
	A Y		ĭ	Ť	Ť	15 pF	2.3	2.7	3.3	1	6.2
		30 pF	3.4	3.8	4.4	1.5	7.8				


OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$


PARAMETER		TEST CONDITIONS	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	4	5	pF

PARAMETER MEASUREMENT INFORMATION

	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _{MI}	V _I /2	V _I /2
V _{MO}	V _{CC} /2	V _{CC} /2

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

REVISION HISTORY

Cł	nanges from Original (October 2012) to Revision A	Page
•	Update document to match SN74AUP1T17	1

www.ti.com 3-Apr-2025

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AUP1T50DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	U35	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

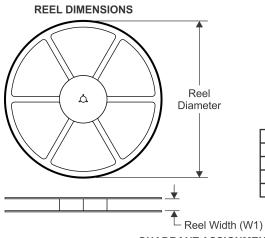
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

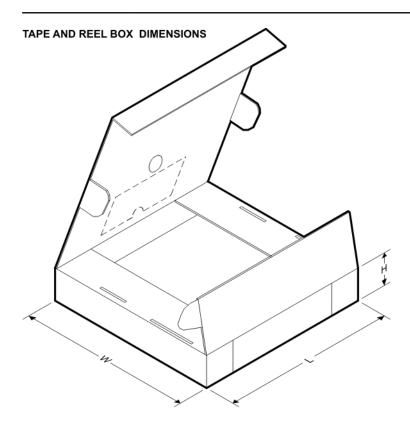
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jul-2016

TAPE AND REEL INFORMATION

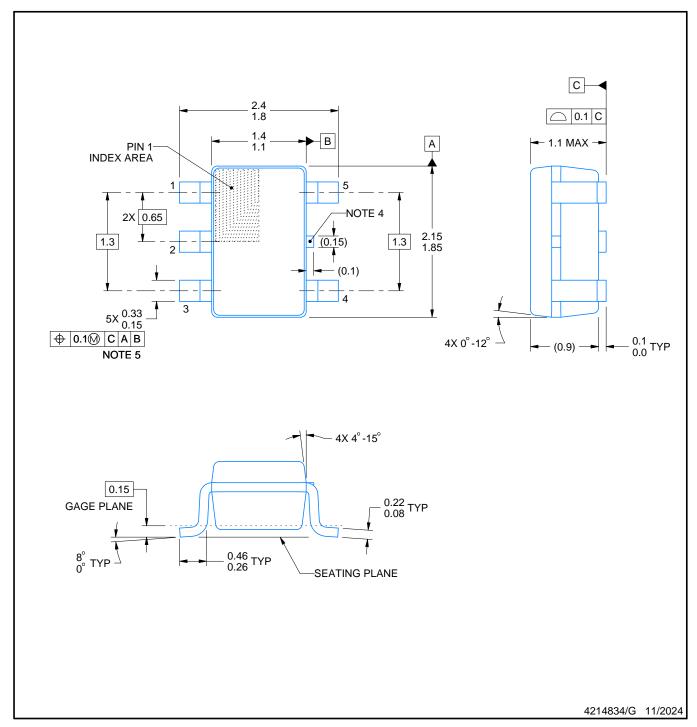
_		
		Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1T50DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3

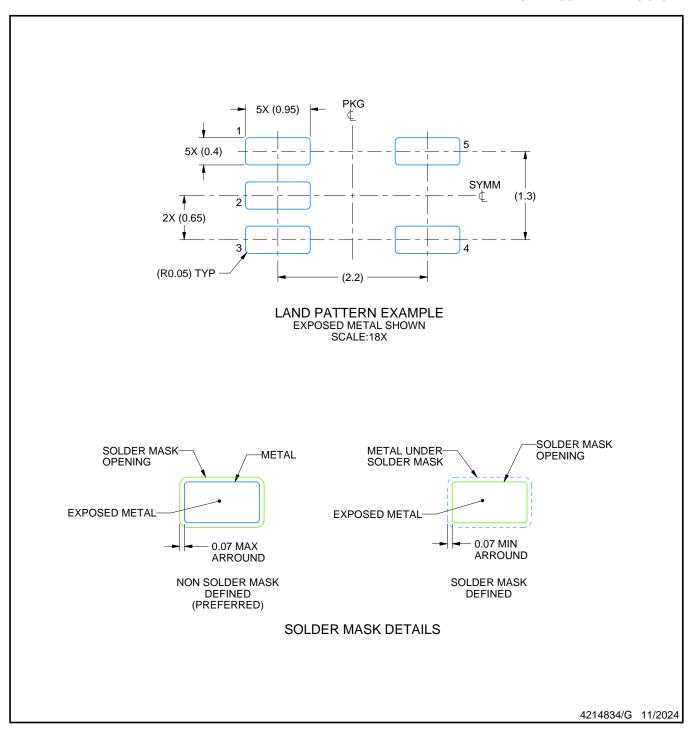
www.ti.com 9-Jul-2016



*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74AUP1T50DCKR	SC70	DCK	5	3000	180.0	180.0	18.0	

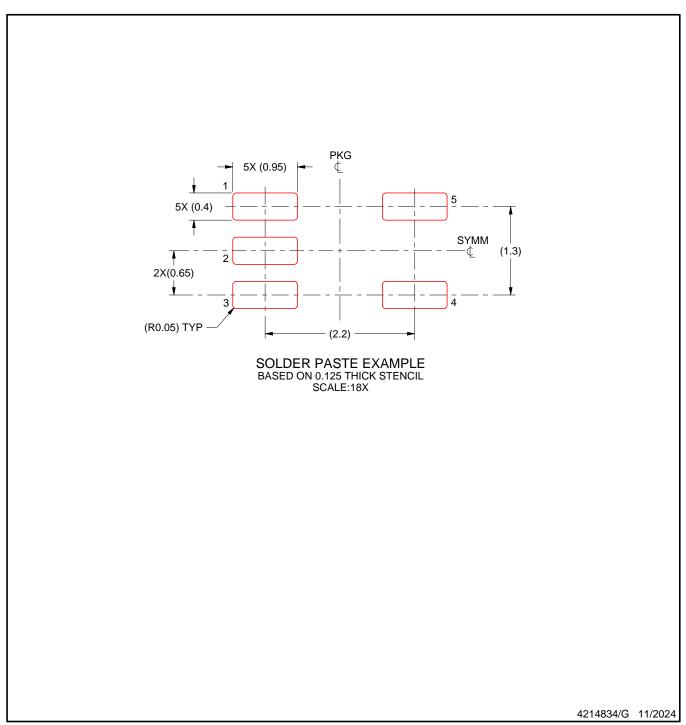
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated