SEMITEC[®] Ishizuka Electronics Corporation

THERMISTOR SPECIFICATIONS

1. Scope

These specifications define ratings, dimensions, electrical properties, mechanical properties and climatic properties for AT-4 type thermistor.

2. Part No.
$$103AT - 4 - 70378$$

- 3. Ratings
- 3.1 Rated zero-power resistance. R_{25} $~10.0~k\Omega~\pm 1$ % (at 25 $^{\circ}\!C$)
- 3.2 Rated B-value. $B_{25/85}$ 3 435 K $\pm 1 \%$

* The rated B-value is calculated using the rated zero-power resistance values measured at 25° C and 85° C.

3.3 Dissipation factor.	Approx.	2	m₩/°C	(in air)
3.4 Thermal time constant.	Approx.	10	S	(in air)
3.5 Maximum power dissipation.		10	mW	(in air at 25℃)

- 4. Category temperature range -30℃ ~ 90 ℃
 (= Operating temperature range)
- 5. Dimensions

Unit(mm)

Spec. No. : S97-03	178	Note		•	Revision	
Date: April 22,	1998				A	
Approved	Checked	A.	Drawn		B	
	L. L.	禹	WATANABE,	K	C	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1/4		NSSP-AT2-128	

<u>SE</u>MITE Ishizuka Electronics Corporation

- 6. Electrical properties (between thermistor body and soldered terminals)
- Above 100 M Ω at DC 100V. 6.1 Insulation resistance
- 6.2 Voltage proof DC 100V for one second.
- 7. Mechanical properties

7.1 Robustness of terminations

- a) Tensile to horizontal direction Hold the thermistor so that the lead wires shall be in a horizontal position. After applying 5N load horizontally for one minute, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.
- b) Tensile to vertical direction One of the lead wires shall be fixed for another one to be loaded 1N gradual tension.

After 1 minute, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

c) Bending

The terminal of the lead wire shall be soldered onto circuit board to be bent into a 90° angle and bent back in one operation with being pulled by 1N load. The lead wire shall not be broken after operating 5 times.

103AT-4-70378

2/4

7.2 Resistance to soldering heat

The terminals of lead wires shall be immersed in the solder bath at 260 ± 5 °C for 10 ± 1 seconds.

After being stored at room temperature and humidity for half an hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

7.3 Solderability

The terminals of the lead wires shall be immersed in solder $(P_b:S_n=4:6)$ bath at $235\pm5^{\circ}C$ for 2 ± 0.5 seconds. Over 90% of the terminal surface shall be soldered, and less than 5% of non-soldered parts shall be at one place.

7.4 Free fall

After three-time natural fall on a maple board from 75cm high, the change ratio of R_{25} and $B_{25 \neq 85}$ shall be within $\pm 1\%$ of the initial value.

7.5 Vibration

The sample shall be fixed to be vibrated in the frequency of 10Hz to 500Hz and whichever smaller of 1.5mm peak-to-peak or 10G acceleration for around 15 minutes with 10Hz-500Hz-10Hz of sweeping ratio.

•

After applying vibration to each direction (X, Y and Z) for 2 hours, 6 hours in total, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

8. Climatic properties

8.1 Dry heat

Test samples shall be exposed in air at 90 °C for 1 000 hours. After being stored at room temperature and humidity for one hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

8.2 Damp heat

Test samples shall be exposed at 40 °C, 95%RH for 1 000 hours. After being stored at room temperature and humidity for one hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

103AT-4-70378

S97-0378

3/4

R SFMITF Ishizuka Electronics Corporation

8.3 Heat load

DC 0.1mA current shall be applied to the test samples in air at 90°C for 1 000 hours. After being stored at room temperature and humidity for one hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

8.4 Cold

Test samples shall be exposed in air at -40° C for 1 000 hours. After being stored at room temperature and humidity for one hour, the change ratio of R₂₅ and B_{25/85} shall be within $\pm 1\%$ of the initial value.

8.5 Rapid change of temperature

Temperature change shall be proceeded in the following order and conditions.

- ① At -20° for 5 minutes.
- 2 Room ambient temperature for one minute.
- (3) At 70 $^{\circ}$ C for 5 minutes.
- ④ Room ambient temperature for one minute.

100 cycles shall be repeated. After being stored at room temperature and humidity for one hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

8.6 Damp load

DC 1mA current shall be applied to the test samples at 40°C, 95%RH for 1 000 hours. After being stored at room temperature and humidity for one hour, the change ratio of R_{25} and $B_{25/85}$ shall be within $\pm 1\%$ of the initial value.

103AT-4-70378

S97-0378