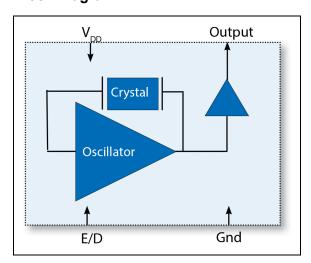


CMOS Crystal Oscillator

Features

- · CMOS Output XO
- · Output Frequencies from 625 kHz to 32.5 kHz
- 3.3V, 2.5V, and 1.8V Operation
- · Low Jitter Performance
- · Output Disable Feature
- Operating Temperature Ranging from –55°C to +125°C
- Small Industry Standard Package, 3.2 mm × 2.5 mm × 1.2 mm VDFN
- Product is RoHS Compliant and Fully Compatible with Lead-free Assembly


Applications

- · SONET/SDH/DWDM
- · Ethernet, GE, SynchE
- · Storage Area Networking
- Fiber Channel
- · Digital Video
- · Broadband Access
- · Base Stations, Picocells

General Description

Microchip's VC-820 Crystal Oscillator (XO) is a quartz stabilized square wave generator with a CMOS output. The VC-820 uses a fundamental or a third overtone crystal, oscillating in a fundamental tone, resulting in very low jitter performance, and a monolithic IC which improves reliability and reduces cost.

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Storage Temperature (T _S)	–55°C to +125°C
Soldering Temp/Time (T _{LS})	+260°C/30 seconds
ESD Rating, Human Body Model (Note 1)	1500V
ESD Rating, Charged Device Model (Note 1)	1000V

 \dagger Notice: Stresses in excess of the Absolute Maximum Ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to Absolute Maximum Ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if E/D is applied before V_{DD}

Note 1: Although ESD protection circuitry has been designed into the VC-820, proper precautions should be taken when handling and mounting. Microchip employs a Human Body Model (HBM) and a Charged Device Model (CDM) for ESD susceptibility testing and design protection evaluation. Human Body Model tested to MIL-STD-883, Method 3015 conditions. Charged Device Model tested to JESD22-C101 conditions.

ELECTRICAL CHARACTERISTICS, 3.3V OPTION

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply						
Voltage	V_{DD}	3.15	3.3	3.45	V	Note 1
Max. Supply Voltage	_	-0.5	_	5.0	V	_
		_	_	6		≤20.000 MHz
		_	_	7		20.000 MHz to 39.999 MHz
		_	_	8		40.000 MHz to 49.999 MHz
Current (Note 2)	I _{DD}	_	_	9	mA	50.000 MHz to 79.999 MHz
				10		80.000 MHz to 99.999 MHz
		_	_	40		100.000 MHz to 133.000 MHz
Current, Output Disabled	_	_	_	5	μΑ	

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 1-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 1-2.
 - 6: Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - 7: The output is enabled if the Enable/Disable is left open.
 - 8: Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 3.3V OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Frequency		•				
Nominal Frequency	f _{NOM}	0.032768	_	133.000	MHz	Note 3
		_	_	±20		
Stability (Note 4, Note 8)		_	_	±25	nnm	Ordering Option
Stability (Note 4, Note 6)		_	_	±50	ppm	Ordering Option
		_	_	±100		
Outputs						
Output Logic Level High, < 40 MHz	V _{OH}	0.9 × V _{DD}	_		V	
Output Logic Level Low, < 40 MHz	V _{OL}	_	_	0.1 × V _{DD}	V	Note 0
Output Logic High Drive, < 40 MHz	I _{OH}	4	_	_	A	Note 2
Output Logic Low Driver, < 40 MHz	I _{OL}	4	_	_	mA	
Output Logic Level High, 40.00 MHz–99.99 MHz	V _{OH}	V _{DD} – 0.4	_	_	V	
Output Logic Level Low, 40.00 MHz–99.99 MHz	V _{OL}	_	_	0.4	V	Note 0
Output Logic High Drive, 40.00 MHz–99.99 MHz	I _{OH}	4	_	_	m A	Note 2
Output Logic Low Driver, 40.00 MHz–99.99 MHz	I _{OL}	4	_	_	mA	
Output Logic Level High, 100.00 MHz–133.000 MHz	V _{OH}	V _{DD} – 0.4	_	_	V	
Output Logic Level Low, 100.00 MHz–133.000 MHz	V _{OL}	_	_	0.4	V	Nete 0
Output Logic High Drive, 100.00 MHz–133.000 MHz	I _{OH}	4	_	_	1	Note 2
Output Logic Low Driver, 100.00 MHz–133.000 MHz	I _{OL}	4	_	_	mA	
Load	I _{OUT}	_	_	15	pF	_
Output Rise/Fall Time (Note 2)	t _R /t _F	_		4	ns	_
Duty Cycle	_	45	50	55	%	Note 2, Note 5

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 1-1.
 - **3:** See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 1-2.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - 7: The output is enabled if the Enable/Disable is left open.
 - 8: Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 3.3V OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	
Period Jitter, RMS		_	2.4	_		Note 6	
Period Jitter, Peak-to-Peak		_	20.2	_		Note 6	
Random Jitter	Φ_{J}	_	2.4	_	ps	_	
Deterministic Jitter	↓ J	_	0		Po	_	
RMS Jitter, 12 kHz–20 MHz, 125 MHz		_	0.06	0.3		_	
Enable/Disable	Enable/Disable						
Output Enable	V_{IH}	0.7 × V _{DD}	_	_	٧	Note 7	
Output Disable	V_{IL}	_	_	0.3 × V _{DD}	V	Note 7	
Disable Time	t _D	_	_	150	ns	_	
Start-Up Time	t _{SU}	_	_	5	ms	_	
		-10	_	+70			
		-40	_	+85			
On a wating a Tayon a water	-	-40	_	+105	°C	Ondonina Ontion	
Operating Temperature	T _{OP}	-40	_	+125	°C	Ordering Option	
		-55		+105			
		- 55	_	+125			

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 1-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 1-2.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - 7: The output is enabled if the Enable/Disable is left open.
 - **8:** Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 2.5V OPTION

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply						
Voltage	V_{DD}	2.375	2.5	2.625	V	Note 1
Max. Supply Voltage	_	-0.5	_	5.0	V	_
		_	_	4.5		≤20.000 MHz
		_	_	5.5		20.000 MHz to 39.999 MHz
Current (Note 2)	I _{DD}	_	_	7.0	mA	40.000 MHz to 79.999 MHz
		_	_	7.5		80.000 MHz to 99.999 MHz
				30.0		100.000 MHz to 125.000 MHz
Current, Output Disabled	_	_	_	5	μΑ	_
Frequency						
Nominal Frequency	f _{NOM}	0.032768	_	125.000	MHz	Note 3
		_	_	±20		Oud aris a Oution
Stability (Note 4, Note 8)		_	_	±25	nnm	
Stability (Note 4, Note 6)	_	_	_	±50	ppm	Ordering Option
		_	_	±100		
Outputs						
Output Logic Level High, < 40 MHz	V _{OH}	0.9 × V _{DD}	_	_	M	
Output Logic Level Low, < 40 MHz	V _{OL}	_	_	0.1 × V _{DD}	V	Note 2, Note 3
Output Logic High Drive, < 40 MHz	I _{OH}	4	_	_		
Output Logic Low Driver, < 40 MHz	l _{OL}	4	_	_	mA	

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 3-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 4-1.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - 7: The output is enabled if the Enable/Disable is left open.
 - **8:** Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 2.5V OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Output Logic Level High, 40.00 MHz–99.99 MHz	V _{OH}	V _{DD} - 0.4	_	_	V	
Output Logic Level Low, 40.00 MHz–99.99 MHz	V _{OL}	_	1	0.4	V	Note 0
Output Logic High Drive, 40.00 MHz–99.99 MHz	I _{OH}	4	1	_	A	Note 2
Output Logic Low Driver, 40.00 MHz–99.99 MHz	I _{OL}	4		_	mA	
Output Logic Level High, 100.00 MHz–133.000 MHz	V _{OH}	1.65	1	_	V	
Output Logic Level Low, 100.00 MHz–133.000 MHz	V _{OL}	_	_	0.4	V	Note 0
Output Logic High Drive, 100.00 MHz–133.000 MHz	I _{OH}	8	_	_	A	Note 2
Output Logic Low Driver, 100.00 MHz–133.000 MHz	I _{OL}	8	_	_	mA	
Load	I _{OUT}	_	_	15	pF	_
Output Rise/Fall Time	t _R /t _F	_	_	4	ns	Note 2
Duty Cycle	_	45	50	55	%	_
Period Jitter, RMS		_	2.4	_		Note 6
Period Jitter, Peak-to-Peak		_	20.2	_		Note 6
Random Jitter	Φ	_	2.4	_	ps	_
Deterministic Jitter	T YJ	_	0	_	рз	_
RMS Jitter, 12 kHz–20 MHz, 125 MHz		_	0.061	0.3		_
Enable/Disable						
Output Enable	V _{IH}	0.7 × V _{DD}	_	_	V	Note 7
Output Disable	V _{IL}	_	_	0.3 × V _{DD}	V	Note 7
Disable Time	t _D	_	_	150	ns	_
Start-Up Time	t _{SU}			5	ms	

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 3-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 4-1.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - **7:** The output is enabled if the Enable/Disable is left open.
 - 8: Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 2.5V OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	
		-10	_	+70			
		-40	_	+85			
On and the Towns and the	T _{OP}	-40	_	+105	00	Oud a visu su Oudi a sa	
Operating Temperature		IOP	-40	_	+125	°C	Ordering Option
		-55		+105			
		-55	_	+125			

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 3-1.
 - **3:** See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - **5:** Duty Cycle is measured as On Time/Period, see Figure 4-1.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - 7: The output is enabled if the Enable/Disable is left open.
 - **8:** Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 1.8V OPTION

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply						
Voltage	V_{DD}	1.71	1.8	1.89	>	Note 1
Max. Supply Voltage	_	-0.5		3.6	>	_
		_		2.5		≤40.000 MHz
		_		3.5		40.000 MHz to 49.999 MHz
Current (Note 2)	I _{DD}	_	1	6.5	mA	50.000 MHz to 79.999 MHz
		_	_	7		80.000 MHz to 99.999 MHz
				20		100.000 MHz to 125.000 MHz
Current, Output Disabled	_	_	_	5	μA	_
Frequency						
Nominal Frequency	f _{NOM}	0.032768		125.000	MHz	Note 3
		_	_	±20		
Stability (Note 4, Note 8)		_		±25	nnm	Ordering Option
Stability (Note 4, Note 6)		_		±50	ppm	Ordering Option
		_	_	±100		
Outputs						
Output Logic Level High, < 40 MHz	V _{OH}	0.9 × V _{DD}	1	_	W	
Output Logic Level Low, < 40 MHz	V _{OL}	_	_	0.1 × V _{DD}	V	Note 2
Output Logic High Drive, < 40 MHz	I _{OH}	2.8	_	_	A	
Output Logic Low Driver, < 40 MHz	l _{OL}	2.8	_	_	mA	

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 3-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 4-1.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - **7:** The output is enabled if the Enable/Disable is left open.
 - **8:** Only ±50 ppm and ±100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

ELECTRICAL CHARACTERISTICS, 1.8V OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Output Logic Level High, 40.00 MHz–125.00 MHz	V _{OH}	V _{DD} - 0.4	_	_	.,	
Output Logic Level Low, 40.00 MHz–125.00 MHz	V _{OL}	_	_	0.4	V	Note 0
Output Logic High Drive, 40.00 MHz–125.00 MHz	I _{OH}	4	_	_	A	Note 2
Output Logic Low Driver, 40.00 MHz–125.00 MHz	I _{OL}	4	_	_	mA	
Load	I _{OUT}	_	_	15	pF	_
Output Rise/Fall Time	t _R /t _F	_	_	5	ns	Note 2
Duty Cycle	_	45	50	55	%	Note 2, Note 5
Period Jitter, RMS		_	2.4	_		Note 6
Period Jitter, Peak-to-Peak		_	20.2	_	ps	Note 6
Random Jitter	Фл	_	2.4	_		_
Deterministic Jitter	ΨJ	_	0	_		_
RMS Jitter, 12 kHz–20 MHz, 125 MHz		_	0.4	0.9		_
Enable/Disable						
Output Enable	V _{IH}	0.7 × V _{DD}	_	_	V	Note 7
Output Disable	V _{IL}	_	_	0.3 × V _{DD}	V	Note 7
Disable Time	t _D	_	_	150	ns	_
Start-Up Time	t _{SU}	_	_	5	ms	_
		-10	_	+70		
		-40	_	+85		
On another a Teneral (_	-40	_	+105		Ordering Option
Operating Temperature	T _{OP}	-40	_	+125	°C	
		-55		+105		
		-55	_	+125		

- **Note 1:** The power supply should have by-pass capacitors as close to the supply and to ground as possible, for example 0.1 uF and 0.01 uF.
 - 2: Parameters are tested with the test circuit shown in Figure 3-1.
 - 3: See Standard Frequencies and Ordering Information tables for more specific information.
 - **4:** Includes initial accuracy, operating temperature, supply voltage, shock and vibration (not under operation) and aging.
 - 5: Duty Cycle is measured as On Time/Period, see Figure 4-1.
 - **6:** Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples.
 - **7:** The output is enabled if the Enable/Disable is left open.
 - 8: Only ± 50 ppm and ± 100 ppm stability options are available for -40/+105 °C, -40/+125 °C, -55/+105 °C, and -55/+125 °C temperature range.

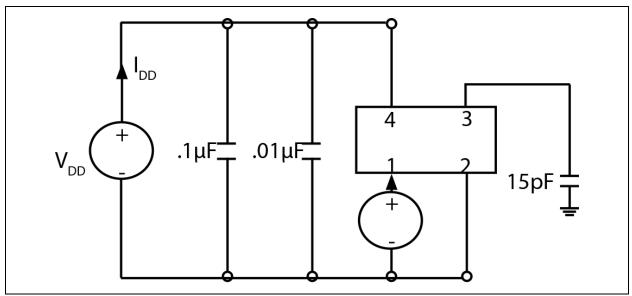


FIGURE 1-1: TEST CIRCUIT.

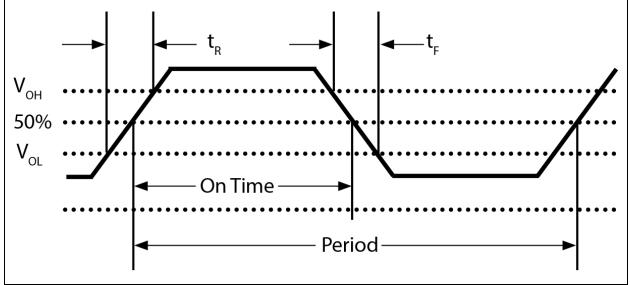


FIGURE 1-2: WAVEFORM.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	E/D	Enable/Disable
2	GND	Case and Electrical Ground
3	Output	Output
4	V_{DD}	Power Supply Voltage

TABLE 2-2: ENABLE/DISABLE FUNCTION

E/D Pin	Output
High	Clock Output
Open	Clock Output
Low	High Impedance

3.0 RELIABILITY

Microchip qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VC-820 family is capable of meeting the following qualification tests.

TABLE 3-1: ENVIRONMENTAL COMPLIANCE

Parameter	Conditions
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross and Fine Leak	MIL-STD-883, Method 1014
Resistance to Solvents	MIL-STD-883, Method 2015
Moisture Sensitivity Level	MSL 1
Contact Pads	Gold (0.3 μm min. to 1.0 μm max.) over Nickel
Weight	27 mg

4.0 IR REFLOW

The VC-820 is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VC-820 device is hermetically sealed, so an aqueous wash is not an issue.

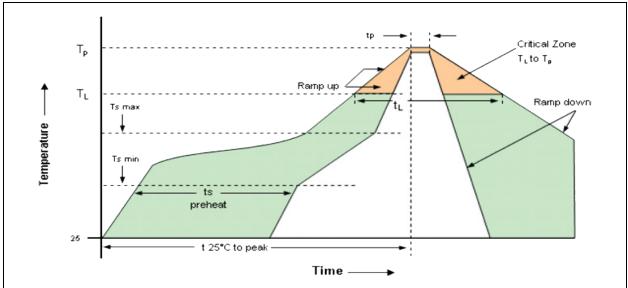


FIGURE 4-1: Solder Profile.

TABLE 4-1: REFLOW PROFILE

Symbol	Minimum	Maximum	Conditions
T _S	150°C	200°C	
t _S	60 seconds	260 seconds	
R _{UP}	_	3°C per second	
t _L	60 seconds	150 seconds	Pb-Free
T _{AMB-P}	_	480 seconds	
t _P	_	30 seconds	
R _{DN}	_	6°C per second	

5.0 TAPE AND REEL

TABLE 5-1: TAPE AND REEL DIMENSIONS

Tape Dimensions (mm)					Reel Dimensions (mm)								
Dimension	W	F	Do	Ро	P1	Α	В	С	D	N	W1	W2	# per
Tolerance	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Min.	Тур.	Min.	Min.	Тур.	Max.	Reel
VC-820	8	3.5	1.5	4	4	175	2	13	21	60	10	14	3000

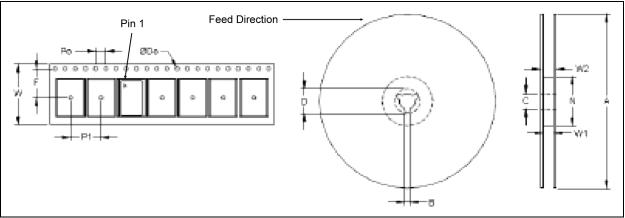
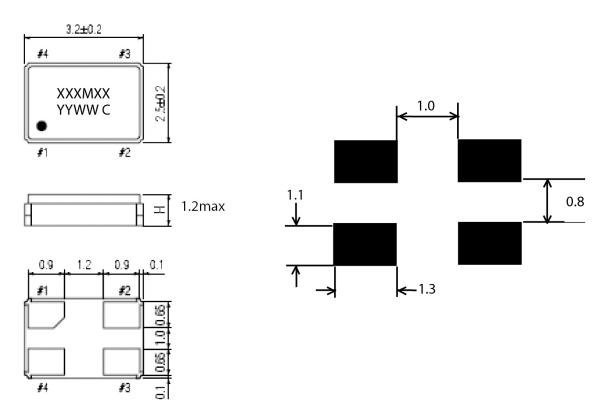


FIGURE 5-1: Tape and Reel.

Note: Pin 1 and feed direction are standard per EIA-481

5.1 Standard Output Frequencies in MHz


- 0.032768
- 0.625000
- 2.000
- 4.000
- 8.000
- 10.000
- 10.700
- 14.31818
- 16.000
- 16.384
- 16.875
- 18.432
- 20.000
- 24.000
- 24.576
- 25.000
- 25.0125
- 26.000
- 27.00028.63630
- 20.00000
- 29.4912
- 30.000

- 31.250
- 31.700
- 32.000
- 33.000
- 33.333000
- 35.328
- 40.000
- 43.675771
- 48.000
- 50.000
- 62.500
- 64.000
- 04.000
- 66.66600075.000
- 80.000
- 93.750
-
- 100.000
- 106.250
- 108.000
- 114.285
- 125.000
- 133.000

6.0 PACKAGING INFORMATION

4-Lead 3.2 mm \times 2.5 mm \times 1.2 mm VDFN [FEC] Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions in mm

APPENDIX A: REVISION HISTORY

Revision A (April 2024)

- Converted Vectron document VC-820 to Microchip data sheet template DS20006895A.
- Minor grammatical text changes throughout.

1	I 1		-8	7	$\mathbf{\Omega}$
V	Ц	او	-0	Z	U

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

XX-XXX	<u>-X</u>		<u>X</u>	<u>X</u>	<u>-X</u>	<u>x</u>	X	<u>X</u>	-xxXxxxxxxx	<u>XX</u>
Device	Power Supply	O	utput	Temperature Range	Stability	Enable/Disable	Load	Custom Options	Frequency	Packaging
Device:	VC-820			Oscillator as 3.		mm ×	Exam	ples:		
			1.2 11111	rocialillo VBI IV	•		a)	VC-820-EA7-KAAN-	1M00000000TR	
_	E	=	3.3VD0	2					Supply, CMOS, -40	
Power Supply:	Н	=	2.5VD0						m and ±100 ppm o e High, 15 pF Load	
Supply.	J	=	1.8VD0						e підп, то рг Load MHz Frequency, 3,	
							b)	VC-820-EAB-KAAN-	10M000000	
Output:	Α	=	CMOS					3 3VDC Power 9	Supply, CMOS, -5	5°C to
									m and ±100 ppm c	
	W		_10°C	to +70°C					e High, 15 pF Load	
	Ë			to +85°C				Option, 10.0000	MHz Frequency, 1	100/Reel
Temp.	F	_		to +105°C (±50	ppm and ±1	100 ppm only)	c)	VC-820-EAW-SAAN	-44M2368000	
Range:	7			to +125°C (±50			,	3 3VDC Power 9	Supply, CMOS, -10	0°C to +70°C
	В			to +105°C (±50					ble High, 15 pF Loa	
	С		–55°C 1	to +125°C (±50	ppm and ±1	100 ppm only)			MHz Frequency, 1	
							d)	VC-820-HAC-KAAN-	125M0000000	
	E		±20 pp				,	2 5VDC Power 9	Supply, CMOS, -5	5°C to
Stability:	F		±25 pp						m and ±100 ppm c	
	K S		±50 pp						e High, 15 pF Load	
	3	_	±100 p	pili				Option, 125.000	0 MHz Frequency,	100/Reel
							e)	VC-820-JAE-FAAN-6	66M6660000TR	
Enable/ Disable:	Α	=	Enable	High				1.8VDC Power S	Supply, CMOS, -40)°C to +85°C,
Disable:				_					e High, 15 pF Load	
								Option, 66.6660	MHz Frequency, 3	3,000/Reel
Load:	Α	=	15 pF							
Custom	N	_	Ctanda	rd Ontion						
Options:	N	=	Standa	rd Option			Note	1: Tape and Ree	l identifier only app	ears in the
							Note		ımber description.	
			F	NALI=					ering purposes and	
Frequency:	xxMxxxxxxxx								package. Check w	
	***********	_	ricque	IIOy III KI IZ					ice for package av	ailability with
								the Tape and F	Reel option. ris 10 digits long in	cluding M fo
Packaging:	TR			Reel (standard 1					ris 10 digits long in kHz, and the prefi:	
. ackaging.	<blaue></blaue>	=	100/Re	el (non-standar	d Tape & Re	eel)		or 3 digits long		A Call DE 1, Z

1	I 1		-8	7	$\mathbf{\Omega}$
V	Ц	او	-0	Z	U

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink. maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-4470-5

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid

Romania - Bucharest Tel: 40-21-407-87-50

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654 **UK - Wokingham**Tel: 44-118-921-5800

Fax: 44-118-921-5820