E3X

Surface mount crystal resonator MHz

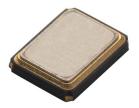


Photo is representative

Product features

- · 1210 (3225 metric) package
- · Moisture sensitivity level (MSL): 1
- Frequency range 12 MHz to 54 MHz
- Variety of frequency tolerance and stability options

Applications

- · Wireless applications
- · Cell phone
- Modems
- · Wireless LAN
- · Communication and test equipment
- · Laptop
- · Network cameras
- · Frequency converters

Environmental compliance and general specifications

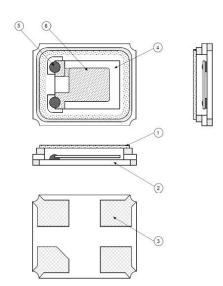
- · Operating temperature range: -40 °C to +85 °C
- Storage temperature range (component): -40 °C to +105 °C

Part number system

<u> </u>	3	X	260	08	1	G	01
	Size code	Product category	Frequency	Load capacitance	Frequency tolerance	Frequency stability	Internal code
E = Eaton	3 = 3225 metric, 1210 imperial	X = crystal	260 = 26 MHz	08 = 8 pF 10 = 10 pF 12 = 12 pF	1 = ±10 ppm 7 = ±15 ppm 2 = ±20 ppm 3 = ±25 ppm 4 = ±30 ppm 5 = ±50 ppm	$U = \pm 10 \text{ ppm}$ $G = \pm 15 \text{ ppm}$ $X = \pm 20 \text{ ppm}$ $W = \pm 25 \text{ ppm}$ $Y = \pm 30 \text{ ppm}$ $H = \pm 35 \text{ ppm}$ $Z = \pm 50 \text{ ppm}$ $Q = \pm 100 \text{ ppm}$	01 - 99

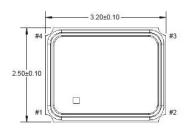
Electrical specifications

Items	Parameters
Frequency range	12 MHz to 54 MHz
Oscillation mode	Fundamental
Frequency tolerance at +25 °C	±10, ±15, ±20, ±30, ±50 ppm
Frequency stability vs. operating temperature range	See table below
Equivalent series resistance	See table below
Drive level	10, 100, 200 μW or specify
Insulation resistance	500 $M\Omega$ minimum at 100 Vdc
Load capacitance	8, 10, 12 pF or specify
Shunt capacitance (C0)	3 pF maximum or specify
Aging at +25 °C	±3 ppm (first year)

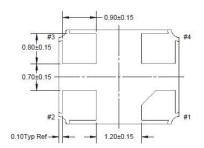

Frequency stability vs. operating temperature range table

ppm	±15	±20	±50
Operating temperature -40 °C to +85 °C	Х	Х	Х

Equivalent series resistance table

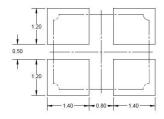

Frequency (MHz)	ESR (Ω) maximum	Oscillation mode
12 to 16	80	
16 to 32	40	Fundamental
32 to 54	20	

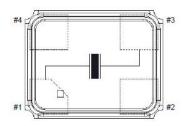
Construction



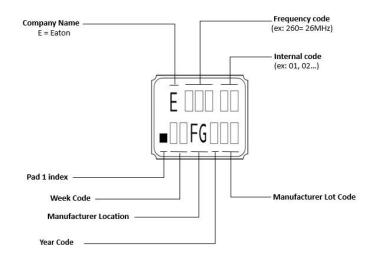
Item number	Component	Description
1	Cap (lid)	Kovar (Fe-Ni-Co)
2	Base (package)	Almina Ceramic (Al ₂ O ₃)
3	Pad (package)	Ni + Au
4	Crystal blank	SiO ₂
5	Conductive adhesive	Ag
6	Electrode	Cr + Ag

Dimensions -mm





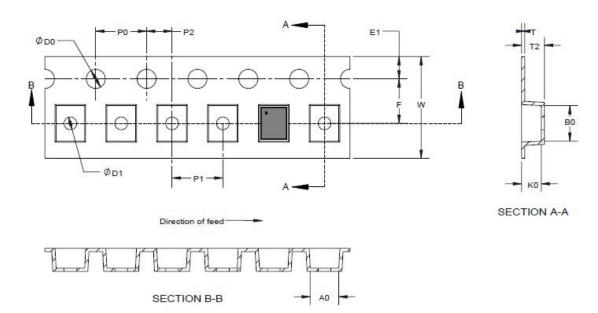
Pad layout -mm


Function diagram

Pad	Function
1	In / out
2	Ground
3	Out / in
4	Ground

Tolerance unless otherwise specified: ±0.1 mm

Part marking



General specifications

Test item	According to	Test specification	
Gross leak	MIL-STD-883 method 1014	Standard sample for automatic gross leak detector, test pressure: 2 kg/cm²	
Fine leak	MIL-STD-883 method 1014	Helium bombing 5.0 kg/cm ² for 2 hours	
Drop test	JIS C6701	150 cm height, free fall onto stainless plate 3 times	
Vibration	MIL-STD-202 method 201	Frequency range = 10 to 55 Hz Amplitude = 1.52 mm Test time of each perpendicular axis = 2 hours (x, y, z axis) Total test time = 6 hours	
Mechanical shock	MIL-STD-202 method 213	Half sine wave, 1000 g, 0.5 ms duration along three mutually perpendicular axes (\pm X, \pm Y, and \pm Z). Each direction for 3 shocks (total 18 shocks)	
Resistance to soldering heat	MIL-STD-202 method 210	Test temperature: +260 °C ±5 °C Test time: 10 seconds ±1 second	
Solderability	J-STD-002	Temperature: ± 245 °C ± 5 °C Immersing depth: 0.5 mm minimum Immersion time: 5 ± 1 seconds Flux: rosin resin methyl alcohol solvent (1:4)	
High temperature storage	MIL-STD-202 method 108	+125 °C ± 3 °C for 500 hours	
Low temperature storage	IEC 60068-2-1	-40 °C ± 3 °C for 500 hours	
Thermal shock	MIL-STD-883 method 1011.9	Total 100 cycles of the following temperature cycle. 1 cycle 125 ± 3 ° C -55 ± 3 ° C 10 min. max.	
High temperature & humidity	JIS C5023	+85 °C ±3 °C, RH 85%, 500 hours	
High temperature operating life	MIL-STD-202 method 108	1000 hours at +85 °C with VDD applied	

Packaging information - mm

3,000 parts on a 7 inch tape and reel (Drawing not to scale)

Dimension	Millimeter
W	8.00 ± 0.30
F	3.50 ± 0.05
E1	1.75 ± 0.10
PO	4.00 ± 0.10
P1	4.00 ± 0.10
P2	2.00 ± 0.05
D0	1.55 ± 0.05
D1	1.0 minimum
A0	2.70 ± 0.10
В0	3.40 ± 0.10
KO	1.40 ± 0.10
T	0.25 ± 0.05
T2	1.9 maximum

Solder reflow profile

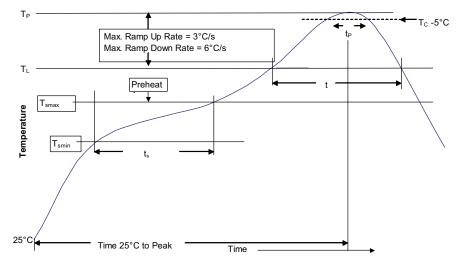


Table 1 - Standard SnPb solder (T_C)

Package thickness	Volume mm3 <350	Volume mm3 ≥350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2 - Lead (Pb) free solder (T_C)

Reference J-STD-020

Profile feature	Standard SnPb solder	Lead (Pb) free solder
Preheat and soak • Temperature min. (T _{smin})	100 °C	150 °C
• Temperature max. (T _{smax})	150 °C	200 °C
• Time (T _{Smin} to T _{Smax}) (t _S)	60-120 seconds	60-120 seconds
Ramp up rate T_L to T_p	3 °C/ second max.	3 °C/ second max.
Liquidous temperature (TL) Time (tL) maintained above $\rm T_L$	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak package body temperature (Tp)*	Table 1	Table 2
Time $(t_p)^*$ within 5 °C of the specified classification temperature (T_c)	20 seconds*	30 seconds*
Ramp-down rate (T_p to T_L)	6 °C/ second max.	6 °C/ second max.
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.

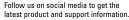
^{*} Tolerance for peak profile temperature (T_n) is defined as a supplier minimum and a user maximum.

Manual solder

+350 °C maximum, 4 seconds maximum by soldering iron, 2 times maximum, generally manual, hand soldering is not recommended

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.


Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States

Eaton.com/electronics

© 2023 Eaton All Rights Reserved Printed in USA Publication No. ELX1387 BU-ELX22256 December 2023

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

