Qualcom

RF360 Europe GmbH

Data sheet

Micro-acoustic extractor GNSS L1

Part number:	B8939
Ordering code:	B39162B8939L210
Date:	August 25, 2022

Version: 2.4

DCN: 80-PA243-482 Rev. E

Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

RF360 Europe GmbH Anzinger Straße 13 81671 Munich, Germany © 2022 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved

These materials, including the information contained herein, may be used only for informational purposes by the customer. Qualcomm Technologies, Inc. and/or its subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein and reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, without warranty, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1	Application	4
2	Features	4
3	Package	5
4	Pin configuration	5
5	Matching circuit	6
6	Characteristics ANT – GNSS	7
7	Characteristics ANT – CELL	8
8	Characteristics GNSS – CELL	10
9	Maximum ratings	. 11
10	Transmission coefficient ANT – GNSS	12
11	Reflection coefficients ANT – GNSS	13
12	Transmission coefficient ANT – CELL	14
13	Reflection coefficients ANT – CELL	15
14	Transmission coefficient GNSS – CELL	16
15	Packing material	17
16	Marking	21
17	Soldering profile	22
18		23
19	Cautions and warnings	24
20	Important notes	25

1 Application

Europe GmbH

RF360

- Premium-performance GNSS L1 Extractor with single ended 50 Ω ports
- Ultra-low-loss acoustic structure

lalcom

- Advanced fully-integrated multiplexer structure
- Using common antenna for GNSS L1 and Cellular bands
- Placed between antenna and cellular front-end switches and filters
- Usable GNSS L1 pass bands: 1559.05-1563.144 MHz (BeiDou), 1574.42-1576.42 MHz (GPS), 1597.55-1605.89 MHz (Glonass)
- Usable CELL pass bands: 617-1511 MHz, 1695-2690 MHz, 3300-5000 MHz
- No switches and control lines required

2 Features

- Package size 1.5 mm × 1.1 mm
- Package height 0.6 mm
- Approximate weight 3 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

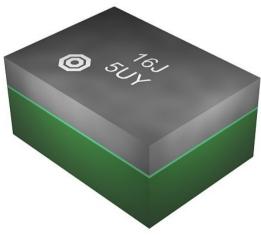
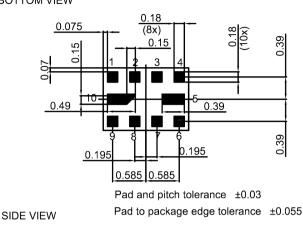
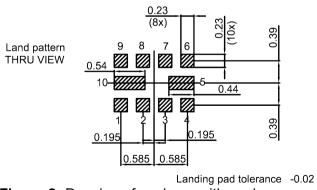



Figure 1: Picture of component with example of product marking.

BOTTOM VIEW

4 Pin configuration

- ∎ 1 ANT
- 4 GNSS
- 9 CELL
- 2, 3, 5, 6, Ground 7, 8, 10



1) Marking for pad number 1

- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Figure 2: Drawing of package with package height A = 0.7 mm (max.). See Sec. Package information (p. 24).

5 Matching circuit

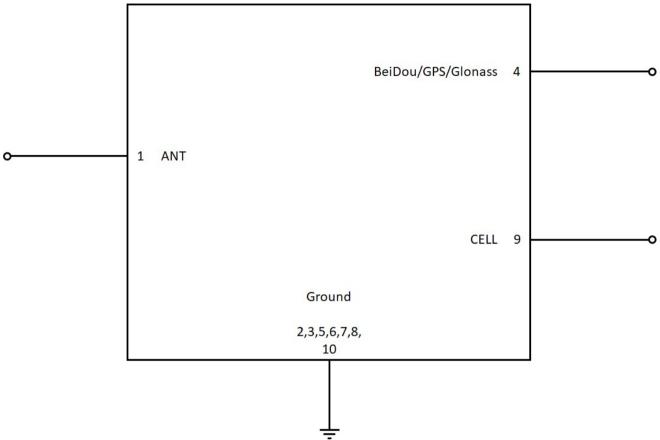


Figure 3: Schematic of matching circuit. No external matching components required.

6 Characteristics ANT – GNSS

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
GNSS terminating impedance	Z _{GNSS}	= 50 Ω
CELL terminating impedance	Z	= 50 Ω

Characteristics ANT – GNSS			min. for $T_{_{ m SPEC}}$	typ. @ +25 °C	max. for $T_{_{\rm SPEC}}$	
Insertion loss		α				
	1559.052 1563.144 N	ИНz	_	1.6	4.1	dB
	1574.42 1576.42 M	ИНz	_	0.8	1.5	dB
	1597.55 1605.89 N	ЛНz	_	1.4	3.5	dB
VSWR		VSWR				
@ ANT port	1559.052 1563.144 N	ЛНz	_	1.1	1.8	
	1574.42 1576.42 M	ЛНz	_	1.1	1.8	
	1597.55 1605.89 N	ИНz	_	1.3	1.8	
@ GNSS port	1559.052 1563.144 N	ИНz	_	1.3	2.5	
	1574.42 1576.42 M	ИНz	_	1.1	1.8	
	1597.55 1605.89 M	ИНz	_	1.2	2.0	
Attenuation		α				
	100 617 M	ИНz	34	40	_	dB
	617 698 M	ИНz	37	41	—	dB
	699 960 N	ИНz	33	38	—	dB
	1427 1511 M	ИНz	34	41	—	dB
	1695 1910 N	ЛНz	34	39	—	dB
	1910 2025 N	ЛНz	35	40	_	dB
	2110 2200 N	ЛНz	32	38	—	dB
	2300 2500 N	ЛНz	36	43	—	dB
	2500 2690 N	ЛНz	37	44	_	dB
	3300 3800 N	ИНz	26	32	—	dB
	3800 4200 N	ЛНz	23	30	—	dB
	4400 5000 N	ЛНz	19	25	—	dB
	5150 5950 N	ИНz	17	24	_	dB

7 Characteristics ANT – CELL

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
GNSS terminating impedance	Z _{GNSS}	= 50 Ω
CELL terminating impedance	Z _{CELL}	= 50 Ω

Characteristics ANT – CELL				min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Insertion loss			α				
	617 652	MHz		—	1.2	2.1	dB
	663 698	MHz		—	0.8	1.7	dB
	699 824	MHz		—	0.7	1.4	dB
	824 960	MHz		—	0.4	1.0	dB
	1427 1511	MHz		—	0.3	1.0	dB
	1452 1496	MHz		—	0.3	0.9	dB
	1695 1785	MHz		—	1.0	1.7	dB
	1805 1880	MHz		—	0.8	1.6	dB
	1920 1990	MHz		—	0.7	1.5	dB
	2010 2025	MHz		—	0.8	1.5	dB
	2110 2200	MHz		—	1.1	1.8	dB
	2300 2496	MHz		—	0.7	1.6	dB
	2496 2690	MHz		—	0.6	1.2	dB
	3300 3800	MHz		—	0.6	1.2	dB
	3800 4200	MHz		—	0.8	1.4	dB
	4400 5000	MHz		—	1.3	2.0	dB
VSWR			VSWR				
@ ANT port	617 652	MHz		—	2.0	2.7	
	663 698	MHz		—	1.6	2.5	
	699 960	MHz		—	1.4	1.9	
	1427 1511	MHz		—	1.2	1.9	
	1695 1785	MHz		—	1.4	1.9	
	1805 2200	MHz		—	1.3	1.9	
	2300 2690	MHz		—	1.1	1.9	
	3300 4200	MHz		—	1.2	1.9	
	4400 5000	MHz		—	1.4	2.0	
@ CELL port	617 652	MHz		—	2.1	2.8	
	663 698	MHz		_	1.7	2.6	
	699 960	MHz		_	1.4	1.9	
	1427 1511	MHz		_	1.2	1.9	
	1695 1785	MHz		—	1.4	1.9	
	1805 2200	MHz		—	1.3	1.9	
	2300 2690	MHz		—	1.1	1.9	
	3300 4200	MHz		—	1.2	1.9	

Characteristics ANT – CELL				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
	4400 5000	MHz		_	1.6	2.0	
Attenuation			α				
	1559.052 1563.1	44 MHz		5.0	8.0	—	dB
	1574.42 1576.4	2 MHz		9.0	19	_	dB
	1597.55 1605.8	9 MHz		6.0	10	—	dB

8 Characteristics GNSS – CELL

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
ANT terminating impedance	Z _{ANT}	= 50 Ω
GNSS terminating impedance	Z _{GNSS}	= 50 Ω
CELL terminating impedance	Z _{CEU}	= 50 Ω

Characteristics GNSS – CELL			min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for $T_{_{\rm SPEC}}$	
Isolation		α				
	617 698	MHz	36	41	—	dB
	699 960	MHz	34	39	—	dB
	1427 1511	MHz	35	41	_	dB
	1559.052 1563.144	MHz	5	10	_	dB
	1574.42 1576.42	MHz	9	19	_	dB
	1597.55 1605.89	MHz	6	11	_	dB
	1695 2025	MHz	36	40	_	dB
	2110 2200	MHz	36	42	_	dB
	2300 2400	MHz	37	45	_	dB
	2496 2690	MHz	43	50	_	dB
	3300 3800	MHz	26	32	—	dB
	3800 4200	MHz	23	30	—	dB
	4400 5000	MHz	20	28	_	dB

9 **Maximum ratings**

Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +85 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} = 5.0 \rm V (max.)^{2}$	
ESD voltage		
	V _{ESD} ³⁾ = 100 V (max.)	Machine model.
	V _{ESD} ⁴⁾ = 200 V (max.)	Human body model.
	$V_{\rm ESD}^{5}$ = 700 V (max.)	Charged device model.
Input power	P _{IN}	
@ ANT port: 824 849 MHz	35 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ ANT port: 880 915 MHz	35 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ ANT port: 1574.42 1576.42 MHz	15 dBm	Continuous wave for 5000 h @ -30+85 °C.
@ ANT port: 1710 1785 MHz	33 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ ANT port: 1850 1910 MHz	33 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ CELL port: 617 960 MHz	30 dBm	5 MHz LTE uplink signal (25 RB) for 5000 h @ -30+85 °C.
@ CELL port: 824 849 MHz	35 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ CELL port: 880 915 MHz	35 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ CELL port: 1427 1463 MHz	30 dBm	5 MHz LTE uplink signal (25 RB) for 5000 h @ -30+85 °C.
@ CELL port: 1710 2690 MHz	30 dBm	5 MHz LTE uplink signal (25 RB) for 5000 h @ -30+85 °C.
@ CELL port: 1710 1785 MHz	33 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ CELL port: 1850 1910 MHz	33 dBm	GSM signal duty cycle 1:8 for 50 h @ -30+85 °C. Effective power in On-state.
@ CELL port: 2402 2482 MHz	26 dBm	20 MHz WLAN signal for 5000 h @ -30+85 °C.
@ CELL port: 3300 5000 MHz	27 dBm	5G NR CP-OFDM signal for 5000 h @ -30+85 °C.

1) Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

2)

168h Damp Heat Steady State acc. to IEC60068-2-67 Cy. According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. 3)

4) According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

5) According to JESD22-C101C (CDM - Field Induced Charged Device Model), 3 negative & 3 positive pulses.

10 Transmission coefficient ANT – GNSS

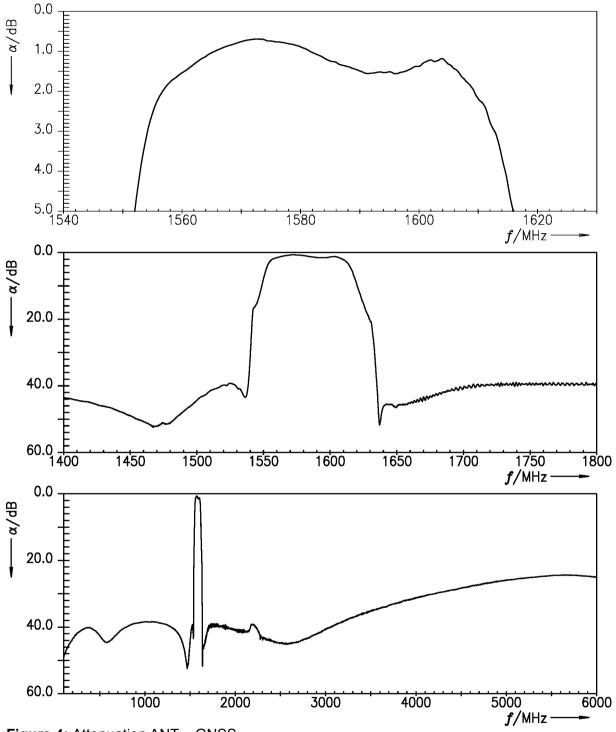
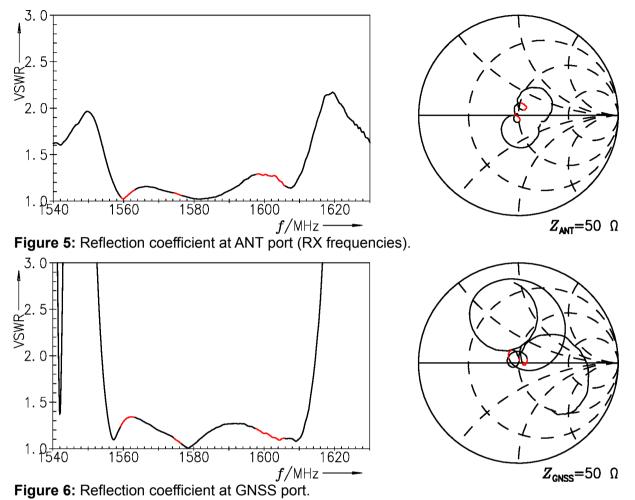
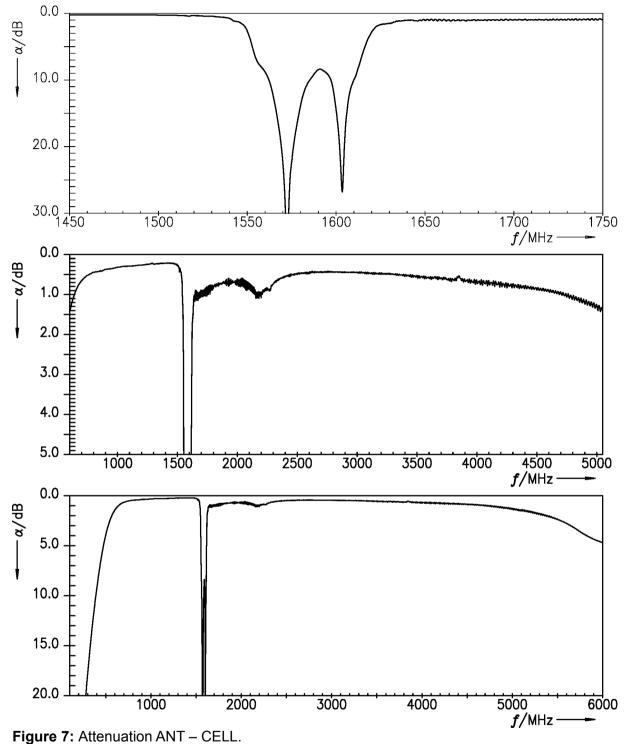
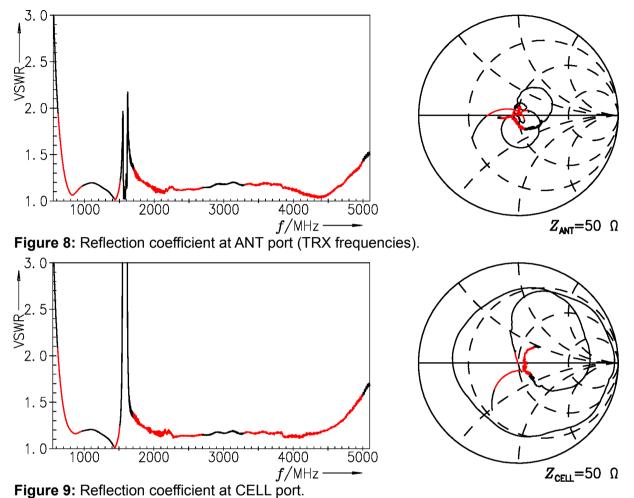



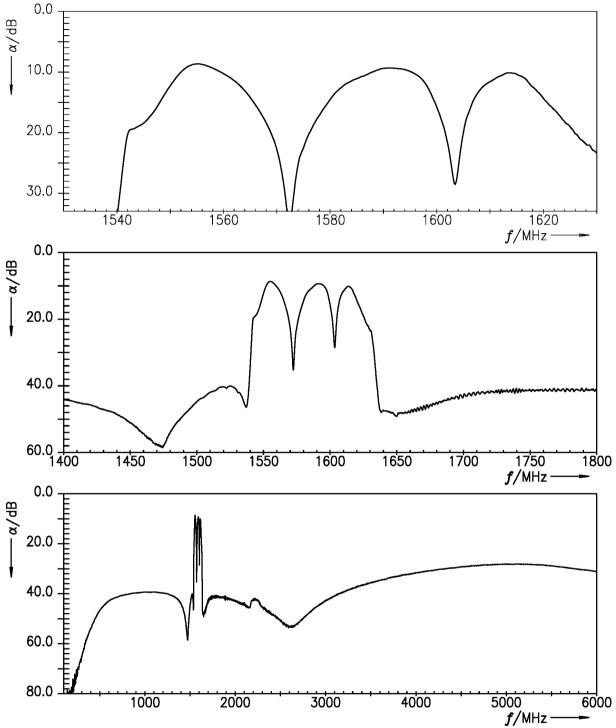
Figure 4: Attenuation ANT – GNSS.

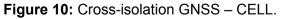


11 Reflection coefficients ANT – GNSS

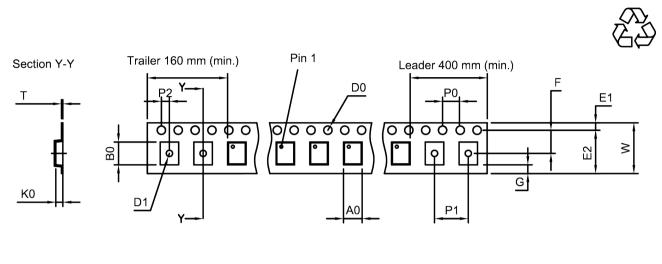


12 Transmission coefficient ANT – CELL




13 Reflection coefficients ANT – CELL

14 Transmission coefficient GNSS – CELL



Please read Cautions and warnings and Important notes at the end of this document.

15 Packing material

15.1 Tape

User direction of unreeling

Figure 11: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	1.3±0.05 mm
B ₀	1.7±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	0.6+0.1/-0 mm
E1	1.75±0.1 mm

Table 1: Tape dimensions.

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.73±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

15.2 Reel with diameter of 180 mm

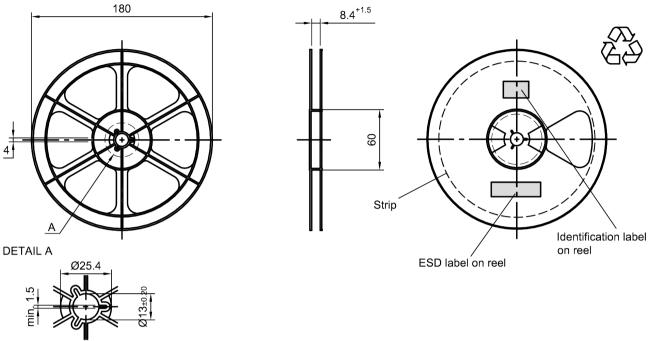
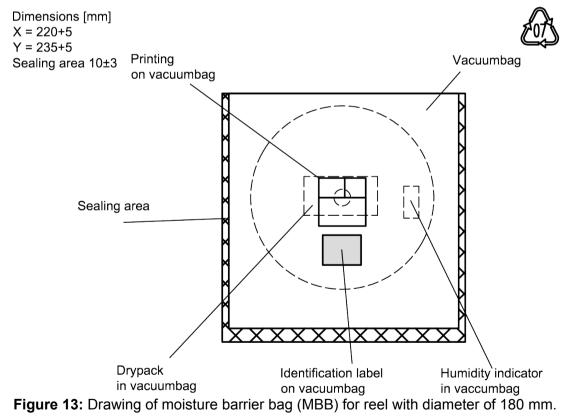



Figure 12: Drawing of reel (first-angle projection) with diameter of 180 mm.

Qualcom RF360 Europe GmbH

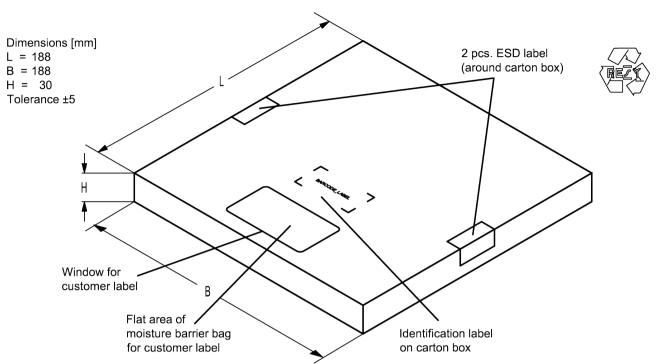


Figure 14: Drawing of folding box for reel with diameter of 180 mm.

15.3 Reel with diameter of 330 mm

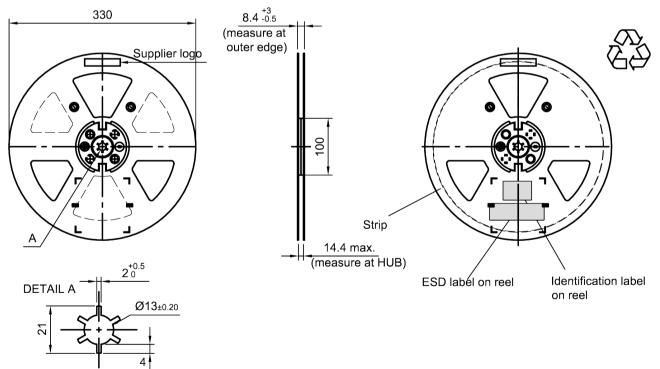


Figure 15: Drawing of reel (first-angle projection) with diameter of 330 mm.

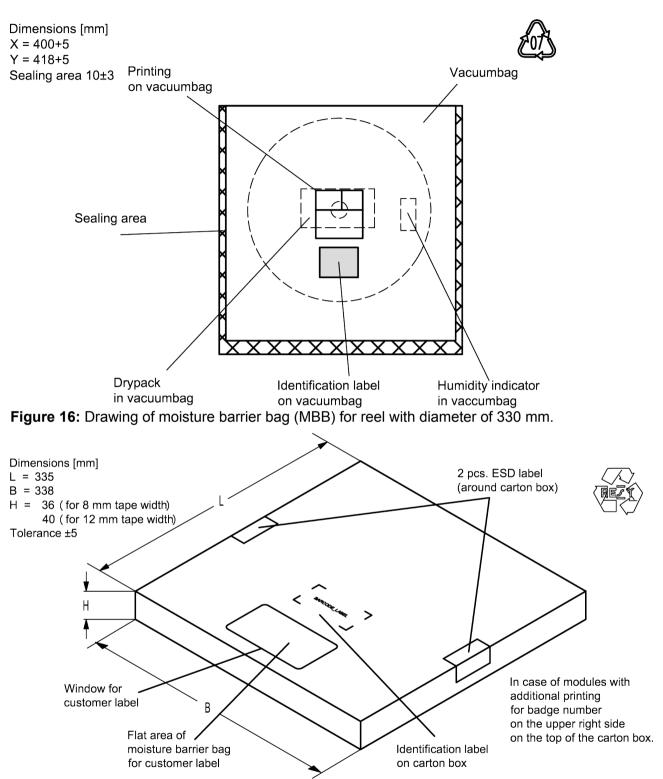


Figure 17: Drawing of folding box for reel with diameter of 330 mm.

16 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering co is encoded by a special BASE32 code into		33xxxxB <u>1234</u> xxxx,
Example of decoding type number m 16J	arking on device	in decimal code. 1234
	=>	1234
$1 \times 32^2 + 6 \times 32^1 + 18$ (=J) $\times 32^0$ =		1234
The BASE32 code for product type B8939	9 is 8QB.	
- Latur weber		

■ Lot number:

The last 5 digits of the lot number, 12345, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device

ple of decoding lot number marking on device		in decimal code.
5UY	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=	12345

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	K
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adop	ted BASE47 c	ode for lot n	umber
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

Table 2: Lists for encoding and decoding of marking.

17 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

≤ 3 K/s
125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
30 s to 70 s
min. 10 s
max. 20 s
-
250 °C +0/-5 °C
230 °C +5/-0 °C for 10 s ± 1 s
≤ 3 K/s
measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 18: Recommended reflow profile for convection and infrared soldering – lead-free solder.

18 Annotations

18.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

18.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

18.3 Ordering codes, product IDs, labels, and packing units

Ordering code	Product ID	RF360 label	Packing unit
D20162D2020L210	B39162-B8939-L210-S05	B39162B8939L210S 5	5000 pcs
B39162B8939L210	B39162-B8939-L210-W05	B39162B8939L210W 5	5000 pcs

Table 4: Ordering codes / product IDs and packing units. Shipment will come from either Singapore or Wuxi location.

19 Cautions and warnings

19.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.gualcomm.com/.

19.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

19.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

19.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

20 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (<u>https://rffe.qualcomm.com</u>). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.