

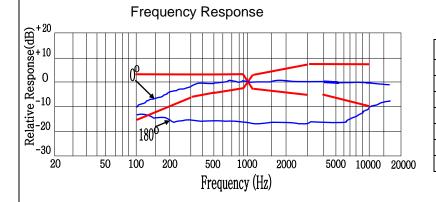
APPROVAL SHEET

N	lodel No. : <u>UB9750A-373G-L01C01-00-0</u> Only No. :					
	Date :					
	APPROVER	CHECKER	DESIGN			
	Please kindly make approval of our samples, And return this form by fax or airmail, Thanks for your kind attention and co-operation. Customer Name:					
	Customer Model No: Project Reference:					
	CUSTOMER APPROVAL					

NAC HOLDINGS LIMITED.

Tel: 86-755-23341456 Fax: 86-755-23324431 Http://www.nacoustics.com sales@nacoustics.com

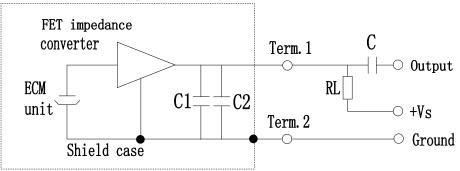
Type: Unidirectional Back Electret Condenser Microphone


Model Number: UB9750A-373G-L01C01-00-0

1. Electrical characteristics

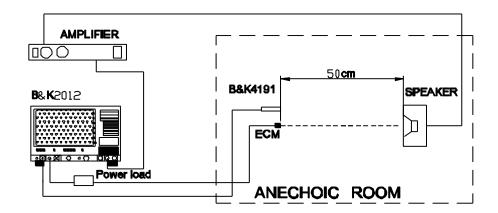
 $(Temp=20\pm2^{\circ}CRoom\ Humidity=65\pm5\%)$

No	Parameter	Symbol	Condition	Limits			Unit
140			Condition	Min.	Center	Max.	Offic
1.1	Sensitivity	S	0dB=1V/Pa, at 1kHz	-40	-37	-34	dB
1.2	Output impedance	Z out	f=1kHz			2.2	ΚΩ
1.3	Current Consumption	I _{DSS}	V_{CC} =2.0V, R_L =2.2K Ω			500	μA
1.4	Signal to Noise Ratio	S/N	at 1kHz S.P.L=1Pa (A-Weighted Curve)	65			dB
1.5	Decreasing Voltage	ΔS	V _{CC} =3.0V to2.0V			-3	dB
1.6	Operating Voltage			1		10	V
1.7	Maximum input S.P.L					110	dB
1.8	Directional Sensitivity		1 kHz @ 180 degree	10			dB

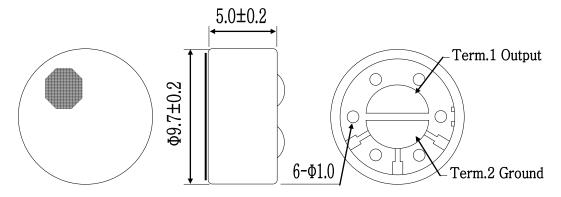

2. Typical Frequency Response Curve

Microphone Response Tolerance Window

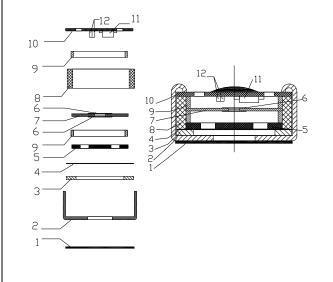
Frequency(Hz)	Lower Limit(dB)	Upper Limit(dB)
100	-15	+3
800	-4	+3
1000	0	0
1200	-4	+4
3000	-5	+8
5000	-6	+8
10000	-10	+8


3. Circuit Diagram

R_L =2.2 $K\Omega$
V _S =2.0V
C1=10PF
C2=33PF
C=1µF



4. Measurement Setup Drawing



5. Appearance And Dimension

Unit: mm

6. Material And Structure

No.	Name	Material	QTY	Remark
1	Dustproof gauze	Non-weav e cloth	1	
2	Case	Al-Mg alloy	1	
3	Diaphragm		1	
4	Spacer		1	
5	Electret Plate		1	
6	Damping net		1	
7	link dump iron		2	
8	Chamber		1	
9	Copper ring		2	
10	P.C.B	FR-4	1	
11	FET		1	
12	Chip Capacitors		2	10pf+33pf

7. Temperature Conditions

Storage Temperature Range	Operation Temperature Range		
-40℃ ~ +85℃	-40℃ ~ +85℃		

Note: Store in electronic warehouse.

8. Terminal Mechanical Strength

Terminal should be no interference in operation after pulled the terminal with 1kg for 1 minute.

9. Reliability Test

After each of following test, the sensitivity of the microphone should be within ±3dB of initial sensitivity after 3hours of conditioning at 20°C.

1. Vibration Test

Frequency: 10Hz~55Hz Amplitude: 1.52mm

Change of Frequency: 1 octave/min

2 hours in each of axes

2. High Temperature Test

+85°C for 240 hours.

3. Low Temperature Test

 -40° C for 240 hours.

4. Humidity Test

90% \sim 95%RH,+60 $^{\circ}$ C for 240 hours.

5. Thermal shocking test

-40°C, 30 minutes ↔ +80°C, 30 minutes, repeated 32 cycles → room temperature, 3 hours.

6.Temperature Cycles

$$-40^{\circ}$$
C \longrightarrow $+20^{\circ}$ C \longrightarrow $+85^{\circ}$ C \longrightarrow $+20^{\circ}$ C \longrightarrow -40° C (2h) (0.5h) (2h) (0.5h) (2h) (0.5h) (2h) for 5 cycles.

7. Packing Drop Test

Height: 1.5m

Procedure: 5 times from each of axes

8. Electrostatic discharge

Tested to IEC61000-4-2 level 3:

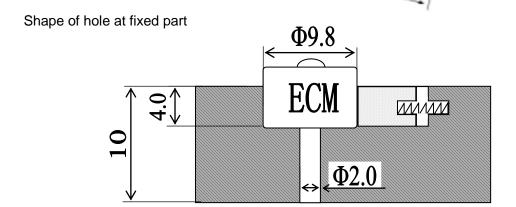
a) Contact discharge

The microphone shall operate normally after 10 discharges to is 6KV DC and the discharge network is 150pF and 330Ω .

b) Air discharge

The microphone shall operate normally after 10 discharges to is 8KV DC and the discharge network is 150 pF and 330Ω

10. Soldering Condition


- 1. We suggest using anti-static welding machine which can control soldering temperature automatically.
- **2.** Soldering temperature should be controlled under 320° C and soldering time for each terminal should be $1\sim2$ sec..
- **3.** Microphone should be fixed on the metal block (heat sink), which has high radiation effects, and heat sink shall contact with MIC tightly.
- **4.** Microphone may easily be destroyed by the static electricity and the countermeasure for eliminating the static electricity shall be executed (worktable and human body shall be ground connection).

5 Heat Sink

Shape of heat sink

Con. Nic. Insert here

