please see www.vishay.com/doc?99912 Multiple module No Switch module n/a Detent module n/a A: linear, L: logarithmic, Special electrical laws F: reverse logarithmic Sealing level IP 67 Lifespan 25K cycles

P120

DIMENSIONS in millimeters ± 0.5 mm

P12T

QUICK REFERENCE DATA

P12T Panel cutout 10.2 ± 0.5 8 Thread M6 x 0.75 Panel thickness: 4 max. 2 ± 0.2 10 wrench 0.8 Slot 0.6 x 1 deep 6.1 - 0.2 12 ± 0.5 6 1 Ø 2.2 ØЗ 0.4 0.75 12 ± 0.5 R = 22 Ø 6.5 +<u>-</u>.08 5.08 Tol. ± 0.5 P12Q Panel cutout 10.2 ± 0.5 8 Thread M7 x 0.75 2 ± 0.2 10 wrench 0.8 Slot 0.8 x 1.4 deep 6.1 ± 0.2 Ø 2.2 6.1 12 -0 4 ø'4 c 0.75 0.4 6.5 F = 12.5 12 ± 0.5 <u>G = 22</u> Tol. ± 0.5 Ø 7.5 5.08 ⁺5.08 Leads Y Leads X 5.08_{5.08} Thread M6 x 0.75 or thread M7 x 0.75 0.75 K = 9.5 or F12 ± 0.5 0.4 10.5 ± 0.5 ØЗ 10.16 5 M = 12.5 5lor F Ø 4 Base level 6.5 + R = 22 or G Thread M6 × 0.75 or thread M7 × 0.7 b 12 ± 0.5 0.5 10.4 ± 0.5 Tol. + 0.5 0.9 Ω 3.8 min. 10.16 1.25 5.085.08 **Terminal spacing Terminal spacing** 5.08 5.08 10 16 10.16

Fully Sealed Container Cermet Potentiometer Professional Grade

> **FEATURES** 1 W at 70 °C Cermet element

Full sealing

· Mechanical strength

Test according to CECC 41000 or IEC 60393-1

• Material categorization: for definitions of compliance

P12Q

Revision: 18-Sep-2024

1

Document Number: 51033

P12

Vishay Sfernice

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

SHAY. www.vishay.com

Vishay Sfernice

P12

ELECTRICAL SPECIFICATIONS					
Resistive element	Cermet				
Electrical travel	270° ± 10°				
Resistance range linear taper	22 Ω to 10 MΩ				
logarithmic taper	100 Ω to 2.2 MΩ				
Standard series E3	1 - 2.2 - 4.7 and on request 1 - 2 - 5				
Tolerance standard	± 20 %				
on request	± 10 %				
Taper	100 BOUNDIESSES				
Circuit diagram	$ \overset{a}{\underset{(1)}{\overset{b}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\circ$				
Power rating Power rating Inear 1 W at +70 °C Iogarithmic 0.5 W at +70 °C	1 LIN. TAPER A 0.5 LOG. TAPER L AND F 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0				
Temperature coefficient	See Standard Resistance Element Data				
Limiting element voltage (linear taper)	350 V				
	3 % or 3 Ω				
Contact resistance variation (typical)	<u>3 % or 3 Ω</u> 1 Ω				
	3 % or 3 Ω 1 Ω 2000 V				

MECHANICAL SPECIFICATIONS						
Mechanical travel		300° ± 5°				
Mechanical travel		2 Ncm max.				
End stop torque	bushing O bushings T and Q	15 Ncm max. 35 Ncm max.				
Tightening torque		150 Ncm max.				
Unit weight		7.6 g to 10 g max.				

Revision: 18-Sep-2024

2

Document Number: 51033

Vishay Sfernice

ENVIRONMENTAL SPECIFICATIONS							
Operating temperature range	-55 °C to +125 °C						
Climatic category	55/100/56						
Sealing	Fully sealed - Container IP67						

PERFORMANCE								
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS						
12313	CONDITIONS	∆ R_T/R_T (%)	∆ R ₁₋₂ / R ₁₋₂ (%)	OTHER				
Electrical endurance	1000 h at rated power 90'/30' - ambient temp. 70 °C	±1%	-	Contact res. variation: < 3 % Rn				
Climatic sequence	Phase A dry heat 125 °C Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles	± 0.5 %	±1%	-				
Damp heat, steady state	56 days 40 °C 93 % RH	± 0.5 %	±1%	Dielectric strength: 1000 V _{RMS} Insulation resistance: > $10^4 M\Omega$				
Change of temperature	5 cycles -55 °C at +125 °C	± 0.5 %	-	-				
Mechanical endurance	25 000 cycles	± 3 %	-	Contact res. variation: < 2 % Rn				
Shock	50 g's at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %	-				
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> 's during 6 h	± 0.1 %	-	$\Delta V_{1-2}/V_{1-3} \le \pm 0.2$ %				

Note

• Nothing stated herein shall be construed as a guarantee of quality or durability

STANDARD		LINEAR TAPER			LOGS TAPER					
RESISTANCE VALUES	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT	TCR -55 ℃ +125 ℃			
Ω	W	v	mA	w	v	mA	ppm/°C			
22	1	4.69	213.2							
47	1	6.85	145.8							
100	1	10	100							
220	1	14.8	67.4							
470	1	21.6	46.1							
1K	1	31.6	31.6	0.5	22.4	22.4				
2.2K	1	46.9	21.3	0.5	33.2	15.1				
4.7K	1	63.5	14.5	0.5	48.5	10.3				
10K	1	100	10	0.5	79.7	7.07	± 150			
22K	1	148.3	6.7	0.5	105	4.77	± 130			
47K	1	216.7	4.6	0.5	153	3.26				
100K	1	316.2	3.16	0.5	224	2.24				
220K	0.56	350	1.59	0.5	332	1.51				
470K	0.26	350	0.75	0.26	350	0.74				
1M	0.12	350	0.35	0.12	350	0.35				
2.2M	0.05	350	0.16	0.05	350	0.16				
4.7M	0.02	350	0.07							
10M	0.01	350	0.01							

www.vishay.com

Vishay Sfernice

MARKING

- Vishay trademark
- Part number (including ohmic value and tolerance code)
- Manufacturing date
- Marking of terminals: 1 or a

PACKAGING

- For shafts AJ, EJ: In box of 15 pieces (code B1)
- For other shafts: In box of 25 pieces (code B2)

OPTIONS	
SPECIAL FEATURES	
Shafts	Lengths are measured from the mounting surface to the free end of shaft. Shaft slot is aligned with the wiper within \pm 10°. Special shafts are available, in accordance with drawings supplied by customers. We recommend customers not to machine shafts, in order to avoid damage. Bending or torsion of terminals should be avoided.
	The type P12T with AB (old code M) or AJ (old code R) shaft can be provided with an optional "DE" sealing hardware which ensures sealing of both the shaft and the mounting panel. DE sealing hardware can be supplied in a separate bag.
Shaft and panel sealing hardware	DE shaft and panel sealing hardware
Shaft locking	The shaft locking bushing is available only with P12O potentiometers. Torque applied to locking nuts should not exceed 15 Ncm. P12OL with spindle locking nut

Vishay Sfernice

P12

ORDE	ORDERING INFORMATION (part number)													
P 1 2 O A B S 4 7 2 M A B 2 D E MODEL BUSHING SHAFT LEADS OHMIC VALUE TOLERANCE TAPER PACKAGING SPECIAL														
P12		Ø	L	Old codes		ø	L	Old codes	S = STD X	Linear	M = 20 % On request:	A = linear	Shafts AJ and EJ:	DE = shaft and
	Т	6	8	Т	AA		9.5	К	Y	from 22 Ω to 10 MΩ	K = 10 %	L = clockwise	B1 = box of	panel sealed hardware
	Q	7	8	Q	AB	3	12.5	L, M		10 10 10122		logarithmic	15 pieces	or
	0	6	11	Н	AJ	3	22	R		Logarithmic		F =	Other shafts:	special code
					EA	4	9.5	E		from 100 Ω		inverse clockwise	box of 25 pieces	given by Vishay
					EB	4	12.5	F		to 2.2 MΩ		logarithmic		
					EJ	4	22	G		$472 = 4.7 \text{ k}\Omega$				
					AP	С	uston	n shaft						

PART	NUMBE	R DES	SCRIPT	I ON (fo	r inforn	nation only)							
P12	Н			L	4K7	20 %	Α		во	DE			e3
MODEL	BUSHING	LEADS	SPECIAL	SHAFT	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	SPECIAL	AP Nº	SPECIAL	LEAD FINISH

ACCESSORIES	
Additional Accessories (to order separately)	www.vishay.com/doc?51051
Control knobs	www.vishay.com/doc?51101

RELATED DOCUMENTS	
APPLICATION NOTES	
Potentiometers and Trimmers	www.vishay.com/doc?51001
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1