

MICRO-OPTICS

Axetris AG

INFRARED SOURCES Schwarzenbergstrasse 10

CH-6056 Kaegiswil

MASS FLOW DEVICES

LASER GAS DETECTION

phone +41 41 662 76 76 fax +41 41 662 75 25

662 76 76 662 75 25 axetris@axetris.com www.axetris.com

EMIRS200_AT02V_BR050_Series

Thermal MEMS based infrared source

For direct electrical fast modulation

TO39 header with Reflector 3 With Calcium Fluoride or Barium Fluoride window

Infrared Source

Axetris infrared (IR) sources are micro-machined, electrically modulated thermal infrared emitters featuring true blackbody radiation characteristics, low power consumption, high emissivity and a long lifetime. The appropriate design is based on a resistive heating element deposited onto a thin dielectric membrane which is suspended on a micro-machined silicon structure.

Infrared Gas Detection Applications

- Measurement principles: non-dispersive infrared spectroscopy (NDIR), photoacoustic infrared spectroscopy (PAS) or attenuated-total-reflectance FTIR spectroscopy (ATR)
- **Target gases:** CO, CO₂, VOC, NO_x, NH₃, SO_x, SF₆, hydrocarbons, humidity, anesthetic agents, refrigerants, breath alcohols
- **Medical:** Capnography, anesthesia gas monitoring, respiration monitoring, pulmonary diagnostics, blood gas analysis
- Industrial Applications: Combustible and toxic gas detection, refrigerant monitoring, flame detection, fruit ripening monitoring, SF₆ monitoring, semi-conductor fabrication
- Automotive: CO₂ automotive refrigerant monitoring, alcohol detection & interlock, cabin air quality
- Environmental: Heating, ventilating and air conditioning (HVAC), indoor air quality and VOC monitoring, air quality monitoring

Features

- Large modulation depth at high frequencies
- Broad band emission
- Low power consumption
- Long lifetime
- True black body radiation (2 to 14 μm)
- Very fast electrical modulation (no chopper wheel needed)
- Suitable for portable and very small applications
- Rugged MEMS design

■ Absolute Maximum Ratings (T_A = 22°C)

Parameter	Symbol	Rating		Unit
Heater membrane temperature ¹	Тм	500		°C
Window		CaF ₂	BaF ₂	
Optical output power (hemispherical spectral) ($T_M = 500^{\circ}C$)	Poo	29	30	mW
Optical output power between 4 μ m and 5 μ m (T _M = 500°C)	P _{s4-5}	4.4	4.4	mW
Optical output power between 6 μ m and 8 μ m (T _M = 500°C)	P _{s6-8}	6.0	5.9	mW
Optical output power between 8 μ m and 10 μ m (T _M = 500°C)	P _{s8-10}	3.6	3.6	mW
Optical output power between 10 μ m and 13 μ m (T _M = 500°C)	P _{s10-13}	1.9	3	mW
Electrical cold resistance (at $T_M = T_A = 22^{\circ}C$)	Rc22	35 to 55		Ω
Electrical operating (hot) resistance ² (at $T_M = 500^{\circ}$ C with $f = \ge 5$ Hz and $t_{on} \ge 8$ ms)	Rн500С	1.883 * RC22 – 12.02		Ω
Package temperature	TP	80		°C
Storage temperature	Ts	-20 to +85		°C
Ambient temperature ³ (operation)	TA	-40 to +125		°C
Heater area	A _H	2.1 x 1.8		mm ²
Frequency ⁴	f	5 to 50		Hz

Note: Emission power in this table is defined by hemispherical radiation. Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Note: Diagram R_{H500C} — R_{C22} | ($T_M = 500^{\circ}$ C)

How to ensure that the maximum temperature for $T_{\mbox{\scriptsize M}}$ is not exceeded:

- 1. Determine electrical cold resistance R_c of the EMIRS device at TA=22°C
- 2. Ensure that anytime R_H does not exceed the representative limit as shown in this diagram with respect to these conditions:
 - a. $f \ge 5 Hz$
 - b. on-time (pulse duration) $\ge 8 \text{ ms}$

Electrical operating (hot) resistance R_H versus electrical cold resistance R_{C22} at $T_A = 22^{\circ}C$

 $^{^{\}rm 1}$ Temperatures above 500°C will impact drift and lifetime of the devices.

² See Diagram $R_H - R_C | (T_M = 500 \degree C)$

³ The environmental and package temperature might impact the lifetime and characteristic of the devices.

 $^{^{\}rm 4}$ Lower cut-off frequency of 5 Hz for designed thermodynamic state.

■ Ratings at Reference Operation (RO¹ T_A = 22°C)

Parameter	Symbol	Rating	Unit
Heater membrane temperature	Тм	< 500	°C
Duty cycle of rectangular V_H pulse	D	62	%
Frequency of rect. pulse shape ²	$\mathbf{f}_{\mathrm{ref}}$	5	Hz
On time constant of integral emissive power Poo	τ _{on}	18	ms
Off time constant of integral emissive power P ₀₀	$ au_{ m off}$	8	ms
Package temperature at $T_A = 22^{\circ}C$	Тр	40 to 85	°C

Note: First order on-time model using τ_{on} : First order off-time model using τ_{off} :

 $^{^1}$ Reference Operation: combines lower cut-off frequency of 5 Hz and maximum modulation depth (max-min signal) 2 Recommended frequencies from 5 Hz to 50 Hz

■ Typical Timing Characteristics Frequency (D = 62%)

 $\begin{array}{l} \mbox{Relative (to RO) max, min, max-min values of optical} \\ \mbox{output power (P_{00}) versus frequency f with fixed and} \\ \mbox{compensated } V_{\rm H} \end{array}$

Note: Diagrams a, b <u>Relative</u> P_{00} , V_{H} , P_{H} to reference operation (RO) f=5 Hz, rect. pulse D=62%

<u>max:</u> maximum value of P₀₀ response shape <u>min:</u> minimum value of P₀₀ response shape <u>max-min:</u> amplitude calculation of P₀₀ resp. shape

Fixed V_H: same voltage for all frequencies.

<u>Compensated</u> V_{H} : for every frequency value, the voltage is adjusted to achieve the same maximum of P_{00} response shape as for 5 Hz.

Relative (to RO) electrical drive values heater voltage V_H and power P_H versus frequency f for compensation

■ Typical Timing Characteristics Pulse Duration D¹ (f = 50 Hz)

Note: Diagrams a, b <u>Relative</u> P_{00} , V_H, P_H to reference operation (RO) f=50 Hz, rect. voltage pulse

<u>max:</u> maximum value of P₀₀ response shape <u>min:</u> minimum value of P₀₀ response shape <u>max-min:</u> amplitude calculation of P₀₀ resp. shape

Fixed VH: same voltage for all frequencies.

<u>Compensated</u> V_{H} : for every frequency value, the voltage is adjusted to achieve the same maximum of P_{00} response shape as for D=62%.

Relative (to RO) electrical drive values heater voltage V_H and power P_H versus duty cycle D for compensation

¹ Effective D shorter than 30% and voltage or power compensation at high frequencies (e.g. 20% @ 50 Hz) might impact the lifetime and characteristic of the devices because of additional stress in material layers.

■ Typical electrical/thermal characteristics (RO, T_A = 22°C)

Parameter	Symbol	Rating	Unit
Peak chip membrane temperature	Тм	460/500	°C
Heater voltage	VH	5.23/5.66	V
Heater power	P _H	394/446	mW

 $\label{eq:mean1} Mean^1 \mbox{ and upper bound of heater voltage } V_{H} \mbox{ vs. cold} \\ resistance \mbox{ RC}_{22}$

Relative change of membrane temperature (T_M) by changing heater voltage (V_H)

 $\label{eq:mean1} Mean^1 \mbox{ and upper bound of heater power P_H vs. cold} \\ resistance $RC_{22}$$

Relative change membrane temperature (T_M) by changing heater power (P_H)

■ Typical Optical Characteristics (RO, T_A = 22°C)

Hemispherical spectral emissive power of EMIRS200 chip surface with a typical emissivity (mean from 2 to 14 $\mu m)$ of $\epsilon{=}0.85$

Poo, caF2 — d / Poo, BaF2 - - d

Distance d between EMIRS and detector (mm)

Relative change of optical output power (P_{00}) by changing heater voltage (V_H)

15

0

30

Optical output power (P_{00}) versus opening angle α_0 (integral rotation of a cone) at 500°C TM

Opening angle α₀ (°)

45

60

75

90

Relative change of optical output power (P_{00}) by changing heater power (P_H)