| MODEL NO. :_ | TM070JDHG30-00 | |----------------|----------------| | ISSUED DATE: _ | 2015-04-07 | | VERSION : | Ver 1.0 | ■Draft Specification □Final Product Specification **Customer:** | Approved by | Notes | |-------------|-------| | | | ## **TIANMA Confirmed:** | Prepared by | Checked by | Approved by | |--------------|------------|-------------| | Hongkang Yan | | | | nonghang ran | | | This technical specification is subjected to change without notice. # **Table of Contents** | 1. General Specifications | 4 | |--|----| | 2. Input/Output Terminals | 5 | | 2.1 TFT CN1 pin assignment | 5 | | 3. Absolute Maximum Ratings | | | 3.1 TFT Absolute Maximum Ratings | 7 | | 4. Electrical Characteristics | 8 | | 4.1.1 Driving TFT LCD Panel | 8 | | 4.1.2 TFT Driving Backlight | 8 | | 4.3.1 TFT Block Diagram | | | 5. Timing Chart | | | 5.1 AC Electrical Characteristics | 11 | | 5.2 DC Electrical Characteristics | 11 | | 5.3 Data Input Format | | | 5.4 Power On/Off Timing | 13 | | 5.4 Power On/Off Timing. 6. Optical Characteristics | 14 | | [^] 6.1 TFT Optical Characteristics | 14 | | 7. Reliability Test | 17 | | 7. Reliability Test | 19 | | 9. Precautions for Use of LCD Modules | | ## Record of Revision | Rev | Issued Date | Description | Editor | |-----|-------------|---------------|--------------| | 1.0 | 2015-04-07 | First release | Hongkang Yan | # 1 General Specification | Item | Feature | Spec | Unit | Note | |-----------------|---------------------------------|-------------------------|------------------------|------| | | Size | 7 | inch | | | | Resolution | 1280(RGB) x 800 | | 1 | | | Interface | RGB 24 bits | | | | | Color Depth | 16.7M | | | | | Technology Type | a-Si | - | | | TFT | Pixel Pitch | 0.117(H) x 0.117 (V) | mm | | | | Pixel Configuration | R.G.B. Vertical Stripe | | | | | Display Mode | SFT with Normally Black | | | | | Surface Treatment(Up Polarizer) | HC | | | | | LCM (W x H x D) | 161.0×107.0×3.35 | mm | | | | LED Numbers | 21 LEDs | | | | Mechanical | Weight | TBD | g | | | Characteristics | Operation temperature | -20~70 | $^{\circ}\!\mathbb{C}$ | | | | Storage temperature | -30~80 | $^{\circ}\mathbb{C}$ | | | Electrical | Interface | LVDS 40 Pin | • | | | Characteristics | Driver IC | 3*ST5821C and 1*ST5084C | | | Note 1: Viewing direction for best image quality is different from Gray Scale Inversion Direction, there is a 180 degree shift. Note 2: Requirements on Environmental Protection: Q/S0002 # 2. Input/output Terminals | Pin No. | Symbol | I/
O | function | Remarks | |----------|------------------|----------|--------------------------------------|---------| | 1 | VCOM | Р | Common Voltage | | | 2 | VDD | Р | Power Voltage for digital circuit | | | 3 | VDD | Р | Power Voltage for digital circuit | | | 4 | NC | | No connection | | | 5 | NC | | No connection | | | 6 | NC | | No connection | | | 7 | GND | Р | Ground | | | 8 | RXIN0- | | - LVDS differential data input | | | 9 | RXIN0+ | I | +LVDS differential data input | | | 10
11 | GND
RXIN1- | Р | Ground | | | 12 | RXIN1-
RXIN1+ | 1 | -LVDS differential data input | | | 13 | GND | P | +LVDS differential data input Ground | | | 14 | RXIN2- | <u>'</u> | -LVDS differential data input | | | 15 | RXIN2+ | ti | +LVDS differential data input | | | 16 | GND | P | Ground | | | 17 | RXCLKIN- | i | -LVDS differential clock input | | | 18 | RXCLKIN+ | i | +LVDS differential clock input | | | 19 | GND | P | Ground | | | 20 | RXIN3- | <u>'</u> | -LVDS differential data input | | | 21 | RXIN3+ | | · | | | | | P | +LVDS differential data input | | | 22 | GND | P | Ground | | | 23 | NC | 7 | No connection | | | 24 | NC | - | No connection | | | 25 | GND | Р | Ground | | | 26 | NC | | No connection | | | 27 | NC | | No connection | | | 28 | NC | | No connection | | | 29 | AVDD | Р | Power for Analog Circuit | | | 30 | GND | Р | Ground | | | 31 | LED- | Р | LED Cathode | | | 32 | LED- | Р | LED Cathode | | | 33 | NC | | No connection | | | 34 | NC | | No connection | | | 35 | VGL | Р | Gate OFF Voltage | | | 36 | NC | | No connection | | | 37 | NC | | No connection | | | 38 | VGH | Р | Gate ON Voltage | | Model No. TM070JDHG30 | 39 | LED+ | Р | LED Anode | | |----|------|---|-----------|--| | 40 | LED+ | Р | LED Anode | | Note1: I/O definition. I---Input, O---Output, P--- Power/Ground, N--- No connection # 3. Absolute Maximum Ratings ## 3.1 TFT Absolute Maximum Ratings | Item | Symbol | Min | Max | Unit | Remark | |---------------------------|------------------|-------|-------|------------|--------------| | | VDD | -0.5 | 5.0 | V | | | Dower Voltage | AVDD | -0.5 | 14.85 | V | | | Power Voltage | VGH | -0.3 | 20.0 | V | | | | VGL | -20.0 | 0.3 | V | | | Backlight Forward Current | I _{LED} | _ | 25 | mA | For each LED | | Operating Temperature | T _{OPR} | -20 | 70 | $^{\circ}$ | | | Storage Temperature | T _{STG} | -30 | 80 | $^{\circ}$ | | 4Electrical Characteristics 4.1.1Driving TFT LCD Panel | <u> </u> | | | | | | | | | |------------------------------------|--------|------|------|------|------|------------------|--|--| | Item | Symbol | Min | Тур | Max | Unit | Remark | | | | Digital Supply
Voltage | VDD | 3.0 | 3.3 | 3.6 | V | | | | | Analog Supply
Voltage | AVDD | 8.0 | 10.4 | 13.5 | V | | | | | Gate On Voltage | VGH | 15.7 | 16.0 | 16.3 | V | | | | | Gate Off Voltage | VGL | -7.1 | -6.8 | -6.5 | V | | | | | Common Electrode
Driving Signal | VCOM | 3.45 | 3.55 | 3.65 | V | With the VR Knob | | | Ta = 25℃ #### Table 4.1 LCD module electrical characteristics Note1: For different LCM, the value may have a bit of difference. Note2: To test the current dissipation, use "all Black Pattern". #### 4.1.2 TFT Driving Backlight | Item | Symbol | Symbol Condition | | Тур | Max | Unit | Remark | |-----------------------------|----------------|-----------------------|--------|------|------|------|--------| | Forward Voltage | VLED | I _F =140mA | | 9.3 | 10.2 | V | | | Forward Current | l _F | - | - | 140 | - | mA | Note 1 | | Backlight Power Consumption | WBL | I _F =140mA | | 1302 | 1428 | mW | | | Life Time | - | I _F =140mA | 10,000 | ī | - | Hrs | Note 3 | Table 4.1 LED backlight characteristics Note 1: I_F is defined for one channel LED. There are total three LED channels in back light unit. Under LCM operating, the stable forward current should be inputted. Note 2: Optical performance should be evaluated at Ta=25°C only. Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data. Figure 4.1 LED connection of backlight #### 4.3.1 TFT Block Diagram # **5.Timing Chart** #### 5.1 AC Electrical Characteristics | Parameter | Symbol | Min | Тур | Max | Unit | Conditions | |------------------------|--------------------|-----|----------------------------|-----|------|---| | Clock Frequency | R _{xFCLK} | 20 | - | 80 | MHz | | | Input data skew margin | T _{RSKM} | 500 | - | _ | ps | IVIDI= 400mV,
RxVCM=1.2V
RxFCLK=80MHz | | Clock high time | T _{LVCH} | - | 4/(7* R _{xFCLK}) | - | ns | | | Clock low time | T _{LVCL} | - | 3/(7* R _{xFCLK}) | _ | ns | | | PLL wake-up time | T _{enPLL} | - | - | 150 | us | | ## 5.2 DC Electrical Characteristics VDD=3.3V, AVDD=11V, AGND=GND=0V, Ta=25℃ | Parameter | Symbol | Min | Тур | Max | Unit | Remark | |---|-------------------|---------------------|-----|--------------------------|------|--------| | Differential input
high Threshold
voltage | R _{XVTH} | ı | - | +0.1 | ٧ | | | Differential input
Low Threshold
voltage | R _{XVTL} | -0.1 | ı | - | ٧ | | | Input voltage range | R _{XVIN} | 0 | _ | VDD-1.0 | V | | | Differential input common Mode voltage | R _{XVCM} | V _{ID} /2 | ı | 2.4- V _{ID} /2 | ٧ | | Model No._TM070JDHG30 | Differential input voltage | [V _{ID}] | 0.2 | V | 0.6 | V | | |------------------------------------|--------------------|-----|------|------|----|-----------------------------------| | Differential input leakage Current | RV _{Xliz} | -10 | V | +10 | uA | | | LVDS Digital Operating Current | Iddlvds | _ | (40) | (50) | mA | Fclk=65MHz,VDD=3.3V | | LVDS Digital
Stand-by Current | Istlvds | I | (10) | (50) | uA | Clock & all functions are stopped | ## 5.3 Data Input Format ## **VESA** data mapping The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation. Page 11 of 21 ## JEIDA data mapping #### 5.4 Power On/Off Timing To prevent the device damage from latch up, the power on/off sequence shown below must be followed. Power ON: # .6. Optical Characteristics # **6.1 TFT Optical Characteristics** | Item | | Symbol | Condition | Min | Тур | Max | Unit | Remark | |----------------|-------|------------------|-----------|-------|-------|-------|-------------------|--------------------------------| | View Angles | | θТ | | 70 | 80 | = | Degree | Note 2 | | | | θВ | CR≧10 | 70 | 80 | - | | | | | | θL | | 70 | 80 | - | | | | | | θR | | 70 | 80 | - | | | | Contrast Ratio | | CR | θ=0° | 600 | 800 | | | Left/right 0°
Top/bottom 5° | | Response Time | | T _{ON} | 25℃ | _ | 35 | 40 | me I | Note1 | | | | T _{OFF} | | | | | 1110 | Note4 | | | White | х | | 0.256 | 0.306 | 0.356 | | Note5
Note1 | | | | у | | 0.279 | 0.329 | 0.379 | | | | | Red | x | | 0.520 | 0.570 | 0.620 | | | | Chromoticity | | у | | 0.280 | 0.330 | 0.380 | | | | Chromaticity | Green | х | | 0.300 | 0.350 | 0.400 | | | | | | у | | 0.542 | 0.592 | 0.642 | | | | | Blue | х | | 0.105 | 0.155 | 0.205 | | | | | | у | | 0.051 | 0.101 | 0.151 | | | | Uniformity | | U | | 70 | 75 | - | % | Note1、Note6 | | NTSC | | | | 45 | 50 | - | % | | | Luminance | | L | > | 320 | 400 | - | cd/m ² | Note7 | #### Test Conditions: - 1. I_F = 20mA(one channel), the ambient temperature is 25°C. - 2. The test systems refer to Note 1 and Note 2. Note 1: Definition of optical measurement system. The optical characteristics should be measured in dark room. After 10 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel. | Item | Photo detector | Field | | |----------------|----------------|-------|--| | Contrast Ratio | | | | | Luminance | CD 2A | 1° | | | Chromaticity | SR-3A | | | | Lum Uniformity | | | | | Response Time | BM-7A | 2° | | Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80). Note 3: Definition of contrast ratio Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}}$ "White state ": The state is that the LCD should drive by Vwhite. "Black state": The state is that the LCD should drive by Vblack. Vwhite: To be determined Vblack: To be determined. Note 4: Definition of Response time The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%. Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD. Note 6: Definition of Luminance Uniformity Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area. Luminance Uniformity (U) = Lmin/Lmax L-----Active area length W----- Active area width Lmax: The measured Maximum luminance of all measurement position. Lmin: The measured Minimum luminance of all measurement position. Note 7: Definition of Luminance: Measure the luminance of white state at center point. 7.Reliability Test | No | Test Item | Condition | Remarks | |----|--|--|---| | 1 | High Temperature Operation | Ta = +70℃, 240 hours | IEC60068-2-1:2007
GB2423.2-2008 | | 2 | Low Temperature Operation | Ta = -20℃, 240 hours | IEC60068-2-1:2007
GB2423.1-2008 | | 3 | High Temperature
Storage | Ta = +80℃, 240 hours | IEC60068-2-1:2007
GB2423.2-2008 | | 4 | Low Temperature
Storage | Ta = -30℃, 240 hours | IEC60068-2-1:2007
GB2423.1-2008 | | 5 | Storage at High
Temperature and
Humidity | Ta=+60°C 、RH=90%, 240 hours | IEC60068-2-78 :2001
GB/T2423.3—2006 | | 6 | Thermal Shock (non-operation) | -30°C (30min) ⇔80°C (30min) ,Change
Time:5min,20cycle | Start with cold
temperature,
End with high
temperature,
IEC60068-2-14:1984,G
B2423.22-2002 | | 7 | ESD | C=150pF \ R=330 Ω Air: ±8KV Contact:±4KV 5point/panel, 5times (Environment:15 ℃ ~35 ℃, 30%~60%.86Kpa~106Kpa) | IEC61000-4-2:2001
GB/T17626.2-2006 | | 8 | Vibration Test | Frequency range:10~55Hz Stroke: 1.5mm Sweep: 10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total) | IEC60068-2-6:1982
GB/T2423.10—1995 | | 9 | Mechanical Shock
(Non OP) | Half Sine Wave
60G ,6ms,±X,±Y,±Z
3times for each direction | IEC60068-2-27:1987
GB/T2423.5—1995 | | 10 | Package Drop Test | Height:60cm,
1corner,3edges,6surfaces | IEC60068-2-32:1990
GB/T2423.8—1995 | #### Notes: - 1. The test result shall be evaluated after the sample has been left at room temperature and humidity for 2 hours without load. No condensation shall be accepted. The sample will not be accepted if appear these defects: - 1). Air bubble in the LCD; - 2).Seal leak - 3).Non-display - 4).missing segments - 5).Glass crack - 6).CR reduction >40% - 7).IDD increase >100% - 8).Brightness reduction >50% - 9).Color coordinate tolerance >0.05 - 2. The samples of these tests will not be accepted if appear these defects: - 1). Air bubble in the LCD; - 2).Seal leak - 3).Non-display - 4).missing segments - 5).Glass crack - 3. Each test item applies for a test sample only once, The test sample can not be used again in any other test item. - 4.For Damp Proof Test, Pure water(Resistance $> 10M\Omega$) should be used. - 5.In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part. - 6 In the test of High Temperature Operation and High Temperature & Humidity Operation ,the operation temperature is the surface temperature of module - 7 High Temperature Operation Low Temperature Operation High Temperature Storage Low Temperature Storage High Temperature & Humidity Operation High Temperature & Humidity Storage will be increased the test time to 1000hours in the same conditions to test out the ability of module, and we can not guarantee that the module will not fail during 1000hours. These items test only once - 8. Thermal Shock will be changed the cycle to 1000 cycles to test out the ability of module, and we can not guarantee that the module will not fail after the test. This item test only once # 8. Mechanical Drawing ## 9. Precautions for Use of LCD Modules ## 9.1 Handling Precautions - 9.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc. - 9.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water. - 9.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. - 9.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. - 9.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents: - Isopropyl alcohol - Ethyl alcohol Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following: - Water - Ketone - Aromatic solvents - 9.1.6 Do not attempt to disassemble the LCD Module. - 9.1.7 If the logic circuit power is off, do not apply the input signals. - 9.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment. - a. Be sure to ground the body when handling the LCD Modules. - b. Tools required for assembly, such as soldering irons, must be properly ground. - c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions. - d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated. #### 9.2 Storage precautions - 9.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. - 9.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is: Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: ≤80% - 9.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas. - 9.3 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.