



# 587 SERIES 2020 6 Pin Addressable RGB LED SMD LED + IC

#### MECHANICAL / SPECIFICATIONS

PART NUMBER: 587-1026-237F

DIMENSIONS:

2.0 x 2.0 x 0.75mm

LENS COLOR: Clear

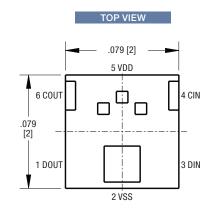
LENS MATERIAL: Epoxy

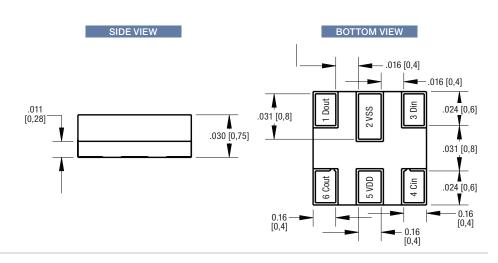
# CONTROL WIRES:

**Dual Wire** 

STANDARD PACKAGING:

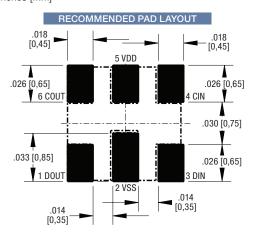
3000 pcs on 7 inch Reel


MOISTURE SENSITIVITY LEVEL: 3


CERTIFICATIONS & RATINGS ROHS Compliant

#### **FEATURES & BENEFITS**

- Dual Wire transmission LED with RGB intelligent driving control circuit and light emitting circuit.
- SMD 2020 package with control circuit and RGB LED chip creates a complete control of pixel, color mixing uniformity and consistency.
- The LED contains a signal decoding module, data buffer, a built-in constant current circuit, and RC oscillator.
- It uses CMOS process, low voltage and low power consumption.
- It has 256 level grayscale PWM adjustment and 32-step dimming control.
- The double data transmission, built-in support uninterrupted oscillation PWM output, can maintain a static image.


#### **DIMENSIONS** inches [mm]







## **DIMENSIONS** inches [mm]



#### PIN FUNCTION

| Serial Number | Symbol | Function Description |  |  |  |  |
|---------------|--------|----------------------|--|--|--|--|
| 1             | DOUT   | Serial data output   |  |  |  |  |
| 2             | VSS    | Ground               |  |  |  |  |
| 3             | DIN    | Serial data input    |  |  |  |  |
| 4             | CIN    | Clock in             |  |  |  |  |
| 5             | VDD    | DC power input       |  |  |  |  |
| 6             | COUT   | Clock output         |  |  |  |  |

# ELECTRICAL - OPTICAL CHARACTERISTICS (Ta=25°C IF=20mA)

| Items               | Symbol     |   | Material | Min | Тур | Max | Unit | Conditions |  |
|---------------------|------------|---|----------|-----|-----|-----|------|------------|--|
| Luminous Intensity  |            | R | AllnGaP  |     | 400 |     |      |            |  |
|                     | lv         | G | InGaN    |     | 800 |     | mcd  |            |  |
|                     |            | В | InGaN    |     | 155 |     |      |            |  |
| Dominant Wavelength | <b>λ</b> D | R |          |     | 620 |     | nm   | VDD = 5V   |  |
|                     |            | G |          |     | 520 |     |      |            |  |
|                     |            | В |          |     | 465 |     |      |            |  |
| Viewing Angle       | 2θ 1/2     |   |          |     | 120 |     | deg  |            |  |

# ABSOLUTE MAXIMUM RATINGS (Ta=25°C, VDD=5V, VSS=0)

| Parameter                   | Symbol | Ratings   | Units |
|-----------------------------|--------|-----------|-------|
| IC Power Supply Voltage     | VDD    | 6.5       | V     |
| Rate of data signal         | FCLK   | 15        | MHZ   |
| ESD voltage                 | VESD   | 2000      | V     |
| Soldering Temperature       | TSD    | 260       | °C    |
| Operating Temperature Range | Topr   | -40~ +85  | °C    |
| Storage Temperature Range   | Tstg   | -40 ~ +85 | °C    |

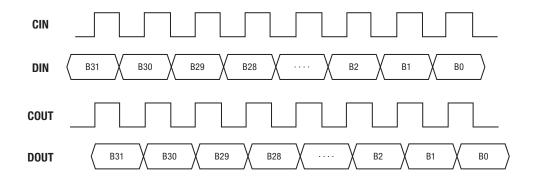
# TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS (Ta=25°C)

| Items               | Symbol | Min | Тур | Max | Unit | Test Conditions |
|---------------------|--------|-----|-----|-----|------|-----------------|
| Supply Voltage      | VDD    | 3.3 | 5   | 5.5 | V    |                 |
| Rate of data signal | FCLK   |     | 5   |     | MHZ  |                 |
| Operation Current   | loc    |     |     | 1.5 | mA   | VDD=5V RGB off  |
| Standby Current     | Isleep |     | 1   |     | uA   |                 |

# **Logic input control DIN/CIN**

| Input high voltage         | VIH    | 2.7  | VDD+0.4 | V   |  |
|----------------------------|--------|------|---------|-----|--|
| Input low voltage          | VIL    | -0.4 | 1.0     | V   |  |
| The clock high level widch | TckH   | 30   |         | ns  |  |
| The clock low level widch  | TckL   | 30   |         | ns  |  |
| Data set up time           | Tsetup | 10   |         | ns  |  |
| Data hold time             | THold  | 5    |         | ns  |  |
| The frequency of PWM       | FPWM   |      | 20      | KHz |  |

# **Logic output DOUT/COUT**


| _ |                 |     |     |         |   |            |  |
|---|-----------------|-----|-----|---------|---|------------|--|
|   | Output High "H" | VOH | 4.5 |         |   | 4mA@VDD=5V |  |
|   | Output Low "L"  | VOL |     | 0.4 VDD | V | 4mA@VDD=5V |  |



#### **COMMAND SET**

| 32-bit 0's | FLAG[2:0] | DIMMING[4:0] | BLUE[7:0] | GREEN[7:0] | RED[7:0] | FLAG[2:0] |  |     | FLAG[2:0] | DIMMING[4:0] |                             | RED[7:0] | N/2 # of dummy<br>data ("1" or "0") |
|------------|-----------|--------------|-----------|------------|----------|-----------|--|-----|-----------|--------------|-----------------------------|----------|-------------------------------------|
| Start      | LED 1     |              |           | LED 2      |          | N-1       |  | LED | N         |              | Need extra<br>N/2 of clocks |          |                                     |

32 consecutive 0's denote the start of a command for an RGB LED. After receiving 32 0's, LED gets the following 32 bits as the received command, including FLAG, DIMMING, BLUE, GREEN and RED fields.



The serial command is transmitted with MSB first, DIN is latched at the rising edge of CIN clock. COUT and DOUT are re-generated for the next RGB LED. COUT is inverted from CIN. When 32 consecutive 0's are encountered, the next 1 is expected to start a 32-bit command, i.e., FLAG[2:0]=111. When FLAG[2:0]=111, then DIMMING, BLUE, GREEN and RED fields are latched respectively.

While the current 32-bit command is got, LED passes remaining command bits to the next RGB LED After the last one command is issued for the last LED (LED n), MCU should issue the extra N/2 numbers of clocks signal if there are N LED lamps totally connected in the strip to make sure the data transfer and display of the last one LED lamp is complete and correct.(the data for the extra N/2 # of clocks may be set as "0" or "1")

| LED1 | 32-bit 0's | LED1       | LED2 | LED3 | <br>32-bit 0's | LED1       | LED2 |
|------|------------|------------|------|------|----------------|------------|------|
| LED2 |            | 32-bit 0's | LED2 | LED3 | <br>           | 32-bit 0's | LED2 |

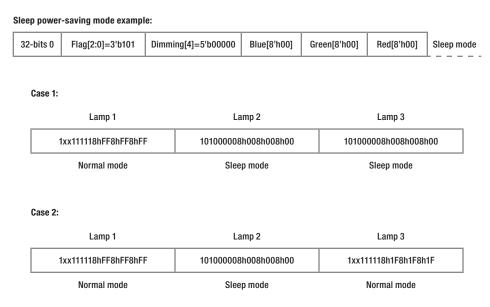
FLAG[2:0]: 111 to start a 32-bit command

**DIMMING[4:0]**: 32-level current control for R/G/B drivers

**GREEN [7:0]**: 256 gray levels for blue LED **BLUE [7:0]**: 256 gray levels for green LED

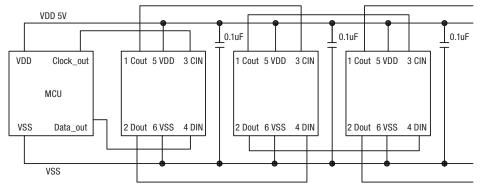
RED[7:0]: 256 gray levels for red LED




### Sleep and power saving mode

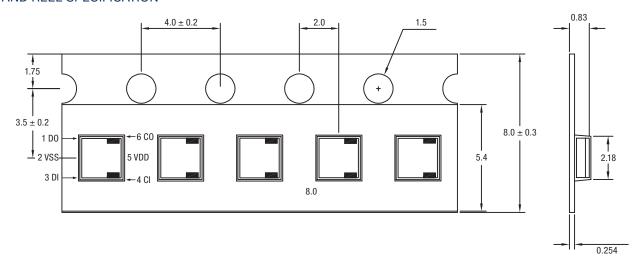
LED supports the sleep/wake-up modes for power-saving purpose. In sleep mode, the built-in oscillator and associated circuitry will be disabled. The quiencent current of LED is approximately 1uA(typ.).

# Command Setup to enable sleep or wake up mode


When recieving 24-bit 0's BGR data (that is BLUE[7:0]=8h00, G[7:0]=8h00, R[7:0]=8h00), in the meantime, both of the data in 3-bits' flag and 5-bits' DIMMING is 8h'A0' (that is FLAG[2:0]=3b101 and DIMMING[4:0]=5b00000), LED will enter sleep mode.

LED will wake up from sleep mode once receiving the new data with the data of Flag[2:0]. DIMMING[4:0] is not 8h"A0"; after wake-up, all sleeping circuits in LED return to normal working mode within 1ms. Since it takes 1ms for a sleeping LED returning to normal function mode, it is recommended for a host to wait for 1ms to send display data and command after issuing a wake-up command.




In case 2, while lamp2 is under sleep mode, in the following data transfer process, the state of lamp 2 will be not changed as long as the 32 bits data for lamp 2 is received with data of Flag[2:0] DIMMING[4:0] being 8h"A0". It means lamp2 will keep in sleep mode as well. In the situation, lamp2 can pass through the remaining data to lamp 3 (32bits) to change the display data of lamp 3. In other words, the sleeping chip is able to pass the data to the next chips.

#### RECOMMENDED ROUTE

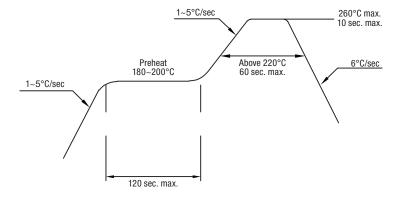




# TAPE AND REEL SPECIFICATION








#### **REFLOW SOLDERING**

Recommended soldering paste specifications:

- 1. Operating temp.: Above 217 °C, 60~150 sec.
- 2. Peak temp.: 260 °C max, 10 sec max
- 3. Reflow soldering should not be done more than two times.
- 4. Never attempt next process until the component is cooled down to room temperature after reflow.
- 5. The recommended reflow soldering profile (measured on the surface of the LED terminal) is as following:

#### LEAD-FREE SOLDER PROFILE





Dialight reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: <a href="https://www.dialightsignalsandcomponents.com">www.dialightsignalsandcomponents.com</a>

Warranty Statement: Except for the warranty expressly provided for at: <a href="www.dialight.com/resources/warranties/">www.dialight.com/resources/warranties/</a>, Dialight disclaims any and all other warranties, express or implied, including, without limitation, any warranties of merchantability, fitness for a particular purpose, title, and noninfringement.