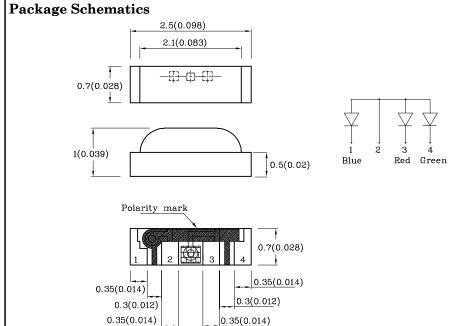


2.5 x 0.7mm Right Angle SMD Chip LED Lamp

Features

- 2.5 x 0.7 x 1.0 mm right angle SMD LED
- Ideal for indication on hand held products
- Low current operation
- Standard Package: 3,000pcs/ Reel
- MSL (Moisture Sensitivity Level): 3
- Halogen-free
- RoHS compliant



ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE

DEVICES

Notes:

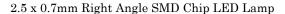
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.15(0.006")$ unless otherwise noted.
- 3. Specifications are subject to change without notice.
- 4. The solder stencil thickness for right angle SMD LEDs should be at least 5mil in order to prevent poor solder wetting.

Absolute Maximum Ratings (T_A =25°C)		Red (AlGaI nP)	Green (InGa N)	Unit
V_{R}	5	5	5	V
I_{F}	30	30	25	mA
$ m I_{FP}$	150	195	150	mA
P_{D}	120	75	102.5	mW
Electrostatic Discharge Threshold (HBM)			450	V
TA	-40 ~ +85 °(°C
Tstg				
	$\begin{array}{c c} V_R \\ I_F \\ I_{FP} \\ P_D \\ \end{array}$	$\begin{array}{c cccc} & \text{(InGa} \\ & \text{N)} \\ \hline & V_R & 5 \\ \hline & I_F & 30 \\ \hline & I_{FP} & 150 \\ \hline & P_D & 120 \\ \hline \\ \hline & P_D & 120 \\ \hline \\ \hline & P_D & 120 \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

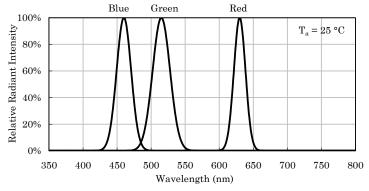
A Relative Humidity between 40% and 60% is recommended in ESD-protected work areas to reduce static build up during assembly process (Reference JEDEC/JESD625-A and JEDEC/J-STD-033)

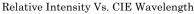
;	Operating Characteristics (T _A =25°C)	Blue (InGa N)	Red (AlGaI nP)	Green (InGa N)	Unit	
	Forward Voltage (Typ.) (I _F =20mA)	V_{F}	3.3	2	3.3	V
	Forward Voltage (Max.) (I _F =20mA)	V_{F}	4	2.5	4.1	V
	Reverse Current (Max.) (V _R =5V)	I_R	50	10	50	μA
	Wavelength of Peak Emission CIE127-2007* (Typ.) (I _F =20mA)	λΡ	460*	630*	515*	nm
	Wavelength of Dominant Emission CIE127-2007* (Typ.) (I _F =20mA)	λD	465*	621*	525*	nm
	Spectral Line Full Width At Half-Maximum (Typ.) (I _F =20mA)	Δλ	25	20	35	nm

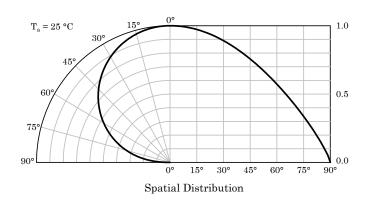
Part Number	Emitting Color	Emitting Material	Lens-color	$\begin{array}{c} \text{Luminous Intensity} \\ \text{CIE127-2007*} \\ \text{(I$_{\text{F}}$=20$mA)} \\ \text{mcd} \end{array}$		Wavelength CIE127-2007* nm λP	Viewing Angle 2θ 1/2
				min.	typ.		
	Blue	InGaN		40*	64*	460*	
XZCBDMEDGK161W	Red	AlGaInP	Water Clear	80*	108*	630*	130°
	Green	InGaN	_	400*	547*	515*	

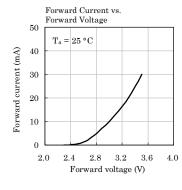

^{*}Luminous intensity value and wavelength are in accordance with CIE127-2007 standards.

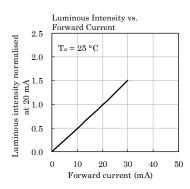
Oct 07.2024

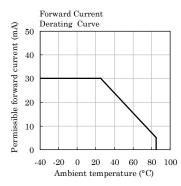

XDSB8191 V7-Z Layout: Maggie L.

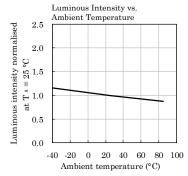




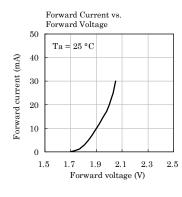


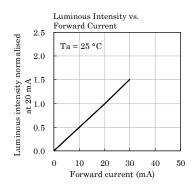


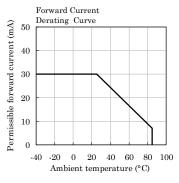


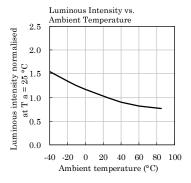


❖ Blue

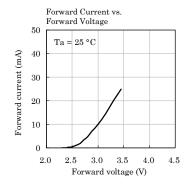


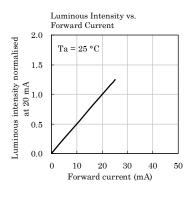


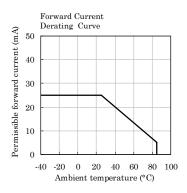


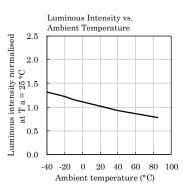


❖ Red





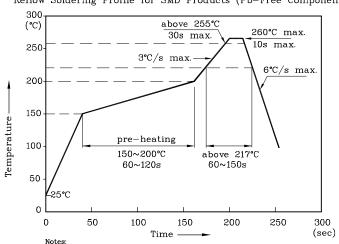




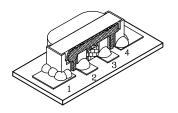
❖ Green

Oct 07,2024

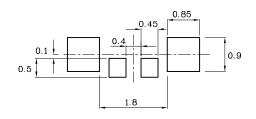
XDSB8191 V7-Z Layout: Maggie L.


2.5 x 0.7mm Right Angle SMD Chip LED Lamp

SunLED www.SunLEDusa.com

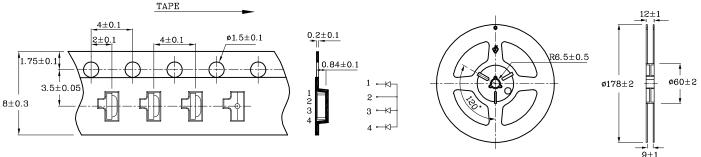

❖ LED is recommended for reflow soldering and soldering profile is shown below.

Reflow Soldering Profile for SMD Products (Pb-Free Components)



- All temperatures refer to the center of the package, measured on the package body surface facing up during reflow.
- 2. Do not apply any stress to the LED during high temperature conditions.
- 3. Maximum number of soldering passes: 2

❖ The device has a single mounting surface. The device must be mounted according to the specifications.



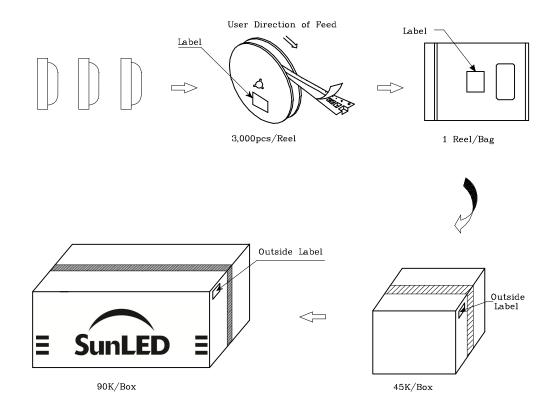
♦ Recommended Soldering Pattern (Units: mm; Tolerance: ± 0.1)

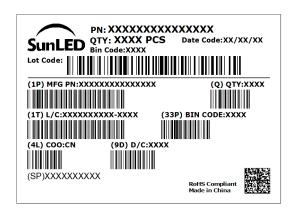
❖ Tape Specification (Units:mm)

❖ Reel Dimension (Units:mm)

Remarks:

If special sorting is required (e.g. binning based on forward voltage, Luminous intensity / luminous flux, or wavelength), the typical accuracy of the sorting process is as follows:


- 1. Wavelength: +/-1nm
- 2. Luminous intensity / luminous flux: +/-15%
- 3. Forward Voltage: +/-0.1V


Note: Accuracy may depend on the sorting parameters.

PACKING & LABEL SPECIFICATIONS

TERMS OF USE

- 1. Data presented in this document reflect statistical figures and should be treated as technical reference only.
- 2. Contents within this document are subject to improvement and enhancement changes without notice.
- 3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet. User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.
- 4. The product(s) described in this document are intended for electronic applications in which a person's life is not reliant upon the LED. Please consult with a SunLED representative for special applications where the LED may have a direct impact on a person's life.
- 5. The performance of the product(s) should be evaluated and verified by the customer to ensure it can meet the customer's application requirements.
- 6. The contents within this document may not be altered without prior consent by SunLED.
- 7. Additional technical notes are available at https://www.SunLEDusa.com/TechnicalNotes.asp

XDSB8191 V7-Z Layout: Maggie L.

P. 4/4