

54mm 1U Front End DC-DC Power Module

FEATURES

LATOREO
800W output power
93% efficiency at 50% load
12V Main output
12V Standby output
Sub 1U height; overall dimensions:
2.15" x 9.32" x 1.57"
(54.5mm x 236.6mm x 40mm)
25.4 Watts per cubic inch density
N+1 redundancy; Hot plug (swap) capable
Active current sharing 12V main output, droop
sharing on VStandby output. Both outputs include
ORing isolation
Overvoltage, Overcurrent, Over-temperature
protection
Internal 28mm cooling fan (variable speed)
DM Due TM //OC interfectory with status indicators

- PMBus[™]/I2C interface with status indicators
- RoHS compliant
- Two Year Warranty

Available now at: www.murata-ps.com/en/3d/acdc.html

The D1U54-D-800-12-HBxBC products are high efficiency 800 watt front end supplies that provide a 12V main and 12V Standby output and features enhanced backpressure performance. An active current share (Analogue) characteristic is provided for parallel operation. The power supply may be hot plugged, recovers from over temperature faults and has status LED indicators in addition to hardware signal logic and PMBus[™] digital communications signals. The low profile 1U package and high power density make this series ideal for delivering reliable, efficient power to servers, workstations, networking equipment, storage systems and other 12V distributed power architectures.

Power Output -44 to -72Vdc	Main Output	Standby Output	Airflow
900W/	10\/do	10\/do	Front to Back
0001	IZVUC	TZVUC	Back to front
		-44 to -72Vdc Output	-44 to -72Vdc Output Output

*See www.murata.com/products/power for model-specific availability.

INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Nom.	Max.	Units
Input Source Voltage Operating Range		-40.8	-48 to -60	-72	Vdc
Turn-on Input Voltage	Ramp up	-41.5	-43	-43.5	Vdc
Turn-off Input Voltage	Ramp down	-37.5	-38	-40.5	vuc
Input current at Vin = -48Vdc	800W		20.5		Adc
Inrush Current	Cold start between 0 to 200msec			25	Apk
	20% load		90		
Efficiency (-53Vdc) excluding fan load	50% load		93		%
	100% load		92		

OUTPUT VOI	LTAGE CHARACTERISTICS					
Nominal Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Output Set Point Accuracy	50% load; Tamb = $25^{\circ}C$	11.96	12.00	12.04	Vdc
12V	Line and Load Regulation	Setpoint; temperature; line and load	-1.0%		+1.0%	%
	Ripple Voltage & Noise ^{1, 2}	20MHz Bandwidth			120	mV p-p
	Output Current Range		0		66.7	Α
	Load Capacitance				4000	μF
	Output Set Point Accuracy	50% load; Tamb = $25^{\circ}C$	11.96	12.00	12.04	Vdc
12VSB	Line and Load Regulation	Setpoint; temperature; line and load	11.7		12.3	vuc
	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mVpp
	Output Current		0		2	Α

¹ Ripple and noise is measured with a parallel combination 0.1μF of ceramic and 10μF of tantalum capacitance on each measurement node. ² Measurements assume the use of the minimum load capacitance as specified for the main 12V output and a minimum load of 5%.Below 5% loading the overall voltage deviation shall be within ±2.5%.

Certificate and Test Report

54mm 1U Front End DC-DC Power Module

Parameter	Conditions	Min.	Тур.	Max.	Units
Startup Time	DC ramp up			3	S
Transient Response	Main and standby outputs – 10%-60% and 50% to 100% load step, 1A/ μ s di/dt			±5 500	% μs
Current sharing accuracy	>10% load; *of maximum output current capability			±5 *	%
Hot Swap Transients	All outputs remain in regulation			± 3	%
Holdup Time (Total Effective Hold Up - See Timing Waveforms)	Full DC Input Source Range;100% load	1			ms

Parameter	Conditions	Min.	Тур.	Max.	Units	
Storage Temperature Range		-40		70	°C	
Operating Temperature Range ¹		-5		55	U	
Operating Humidity	Noncondensing; +45°C	5		90		
Storage Humidity		5		95	%	
Altitude (without derating at 40°C)				3000	m	
Shock	30G non-operating					
Operational Vibration	Sine sweep; 5-200Hz, 2G; random vibration, 5-500Hz, 1.11G					
MTBF(Target)	Per Telcordia SR-332 M1C3 @40°C		462K		hrs	
Safety Approval Standards	CAN/CSA C22.2 No 60950-1-07, Amendment 1:2011, Amendment 2:2014 (MOD) ANSI/UL 60950-1-2014 IEC 60950-1:2005, IEC 60950-1:2005/AMD1:2009, IEC 60950-1:2005/AMD2:2013 GB17625.1-2012; GB4943.1-21011; GB/T9254-2008 (Class A)					
Input Fuse	Power Supply has an internal fuse in the DC input negative line. Fuse Type: Fast-Acting; Interruption Rating: 500A @72Vdc					
Weight	1.74 lbs. (0.789 kg)					

¹ Operating temperature limits set to align with Telcordia NEBS GR-63-CORE; the UL of +55C accommodates the "abnormal" operating temperature at shelf level and sea level. To simulate for altitude to 1800m (5905ft rounded to 6000ft) an additional 1°C shall be added for every 1000ft above sea level; worst case this requires testing at +61°C and may require derating to be applied to meet.

AIRFLOW; PRESSURE VS. FLOW (PQ) CURVES:

Notes:

1. The above curves represent performance based upon a the use of a Delta 28mm thickness FFB0412UHN fan however since this model is being prepared using the base model of M1873/M1874 (which uses the Delta FFB0412EN variant fan) then these curves will require to be updated to reflect that performance; this shall be a deliverable at the time of production release.

2. Internal File reference: \\tOR-FILE04\Data\Design Control Database (DCD)\1970_1971_M BM 800W DC-DC Mod1873\05 - DVT1\airflow\M1970-1971 Airflow Test Report (9-19-2018)Curves generated with internal fan running at 100% duty cycle

3. Simulated based on three input terminal block cover configurtions

Murata Power Solutions

54mm 1U Front End DC-DC Power Module

I CHARACTERISTICS	

Output	Parameter	Conditions	Min.	Тур.	Max.	Units
	Overtemperature	Auto restart with 4°C hysteresis for recovery (warning issued at 65°C)		75		°C
	Overvoltage	Latching	13		14.5	°C
12V	Overcurrent	The output shall shutdown when an overcurrent condition is detected. It will auto restart after 1sec; however if the overcurrent condition is redetected the output will once again shutdown. The output will once again re-start, however if the overcurrent condition persists it will latch of after the fifth unsuccessful attempt. To reset the latch it will be necessary to toggle the PS_ON_L signal (B4) or recycle the incoming AC source.	70		80	A
	Overvoltage	Latching	13.0		14.5	V
12VSB	Overcurrent	The output shall shutdown when an overcurrent is detected. It will auto restart after 2sec; however if the overcurrent is re-detected the output will once again shutdown. This cycle will occur indefinitely while the overcurrent condition persists.	2.1		3.5	A

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Insulation Safety Rating	Input to Output tied to Chassis together	1500			Vdc
Isolation	Output to Chassis	500			Vdc

EMISSIONS AND IMMUNITY		
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A with 6dB margin
ESD Immunity	IEC/EN 61000-4-2	Level 4 criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B
Electrical Fast Transients/Burst Immunity	IEC/EN 61000-4-4	Level 3 criteria B
Surge Immunity	IEC/EN 61000-4-5	±1kV common mode and differential mode, unit passes criteria A (normal performance)*
RF Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B
* Impedance is 2 ohms for differential and common mode		

LED NAME	LED MODE	LED STATE/OPERATION	DESCRIPTION
Input	OK	Solid Green	Input voltage operating within normal specified range
Input	OV/UV WARNING	Blinking Green	Input voltage operating in: 1) overvoltage warning, or 2) undervoltage warning range
Input	OFF OR FAULT	Off	Input voltage operating: 1) above overvoltage range, or 2) below undervoltage range, or 3) not present
Output	POWER GOOD	Solid Green	Main output and standby output enabled with no power supply warning or fault detected
Output	STANDBY	Blinking Green	Standby output enabled with no power supply warning or fault detected
Output	WARNING	Blinking Amber	Power supply warning detected as per PMBus [™] STATUS_X reporting bytes [•]
Output	FAULT	Solid Amber	Power supply fault detected as per PMBus™ STATUS X reporting bytes*

Murata Power Solutions

muRata 🖪

54mm 1U Front End DC-DC Power Module

Signal Name	1/0	Description	Interface Details
INPUT_OK (DC Source)	Output	The signal output is driven high when the input source is available and within acceptable limits. The output is driven low to indicate loss of input power. There is a minimum of 5ms pre-warning time before signal changes to a high impedance state or is driven low to indicate loss of 12V. The power supply must ensure that this interface signal provides accurate status when DC power is lost.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc; A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
PW_OK (Output OK)	Output	The signal is asserted, driven high, by the power supply to indicate that all outputs are valid. If any of the outputs fail then this output will be hi-Z or driven low. The output is driven low to indicate that the Main output is outside of lower limit of regulation.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc; A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
SMB_ALERT (FAULT/WARNING)	Output	The signal output is driven low to indicate that the power supply has detected a warning or fault and is intended to alert the system. This output must be driven high when the power is operating correctly (within specified limits). The signal will revert to a high level when the warning/fault stimulus (that caused the alert) is removed. SMB_Alert and LED Fault / warn status assert together. CML errors do not assert SMB_Alert and LED status.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc;A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
PRESENT_L (Power Supply Absent)	Output	The signal is used to detect the presence (installed) of a PSU by the host system. The signal is connected to PSU logic SGND within the power module.	Passive connection to +VSB_Return. A logic low <0.8Vdc
PS_ON (Power Supply Enable/Disable	Input	This signal is pulled up internally to the internal housekeeping supply (within the power supply). The power supply main 12Vdc output will be enabled when this signal is pulled low to +VSB_Return. In the low state the signal input shall not source more than 1mA of current. The 12Vdc output will be disabled when the input is driven higher than 2.4V, or open circuited. Cycling this signal shall clear latched fault conditions.	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
PS_KILL	Input	This signal is used during hot swap to disable the main output during hot swap extraction. The input is pulled up internally to the internal housekeeping supply (within the power supply). The signal is provided on a short (lagging pin) and main output is enabled when this signal is pulled down (+VSB_Return).	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc; A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
ADDR (Address Select)	Input	An analogue input that is used to set the address of the internal slave devices (EEPROM and microprocessor) used for digital communications. Connection of a suitable resistor to +VSB_Return, in conjunction with an internal resistor divider chain, will configure the required address (see ADDR Address Selection table).	DC voltage between the limits of 0 and +3.3Vdc.
SCL (Serial Clock)	Both	A serial clock line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. No additional internal capacitance is added that would affect the speed of the bus. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is completely unpowered,	VIL is 0.8V maximum VoL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
SDA (Serial Data)	Both	A serial data line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is completely unpowered,	VIL is 0.8V maximum VoL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
V1_SENSE V1SENSE_RTN	Input	Remote sense connections intended to be connected at and sense the voltage at the point of load. The voltage sense will interact with the internal module regulation loop to compensate for voltage drops due to connection resistance between the output connector and the load. If remote sense compensation is not required then the voltage shall be configured for local sense by: 1. V1_SENSE directly connected to power blades 6 to10 (inclusive) 2. V1_SENSE_RTN directly connected to power blades 1 to 5 (inclusive)	Compensation for up to 0.12Vdc total connection drop (output and return connections).
ISHARE	Bi- Directional Analogue Bus	The current sharing signal is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional analogue bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% load (module capability). For two identical units sharing the same 100% load this would read approximately 4VDC for perfect current sharing (i.e. 50% module load capability) per unit).	Analogue voltage: Approximately +8V maximum; 10K to +12V_RTN

54mm 1U Front End DC-DC Power Module

OUTPUT CONNECTOR & SIGNAL INTERFACE; FCI PN 10122460-005LF

NB: Signals annotated "3" in Column 5, refers to the shortest sequenced signal pin; the "shortest" pins are the "last to make, first to break" in the mating sequence.

OUTPUT CONNECTOR PIN ASSIGNMENTS

(Power Supply) FCI PN 10122460-005LF				
Pin	Signal Name	Comments		
6, 7, 8, 9, 10	V1 (+12V0UT)	+12V Main Output		
1, 2, 3, 4, 5	+12V RTN/PGND	+12V Main Output Return		
A1	+VSB	Standby Output		
B1	+VSB	Standby Output		
C1	+VSB	Standby Output		
D1	+VSB	Standby Output		
E1	+VSB	Standby Output		
A2	+VSB_Return	Standby Output Return		
B2	+VSB_Return	Standby Output Return		
C2	Unused	No End User Connection		
D2	Unused	No End User Connection		
E2	Unused	No End User Connection		
A3	ADDR	I ² C Address Protocol Selection; (Select address by appropriate pull down resistor – See table below)		
B3	Unused	No End User Connection		
C3	SDA	I ² C Serial Data Line		
D3	V1_SENSE_R	-VE Remote Sense Return		
E3	V1_SENSE	+VE Remote Sense		
A4	SCL	I ² C Serial Clock Line		
B4	PS_ON_L	Remote On/Off (Enable/Disable)		
C4	SMB_ALERT	Alert signal to host system		
D4	Unused	No End User Connection		
E4	INPUT_OK	DC Input Source Present & "OK"		
A5	PS_KILL	Power Supply "kill"; short pin		
B5	ISHARE	Active Current Share Bus		
C5	PW_0K	Power "OK"; short pin		
D5	Unused	No End User Connection		
E5	PRESENT_L	Power Module Present; short pin		

54mm 1U Front End DC-DC Power Module

MATING CONNECTOR

```
Part Number
TE Connectivity 2-1926739-5
FCI 10108888-R10253SLF
```

Description Right Angle Right Angle

ADDRESS SELECTION

ADDIEDO DELEOTION					
ADDR pin (A3) resistor to GND (K-ohm)*	Power Supply Main Controller (Serial Communications Slave Address)	Power Supply External EEPROM (Serial Communications Slave Address)			
0.82	0xB0	0xA0			
2.7	0xB2	0xA2			
5.6	0xB4	0xA4			
8.2	0xB6	0xA6			
15	0xB8	0xA8			
27	0xBA	0xAA			
56	0xBC	OxAC			
180	0xBE	0xAE			
* The resistor shall be +/-5% tolerance or better					

Link: Back to signal table

WIRING DIAGRAM FOR OUTPUT

CURRENT SHARE NOTES

- 1. Main Output: Current sharing is achieved using the active (analogue) current share method.
- 2. Current sharing can be achieved with or without the remote (V_SENSE and V_SENSE_R) connected to the common load.
- 3. +VSB Outputs can be tied together for redundancy but total combined output power must not exceed the rated standby power. The +VSB output has an internal ORING MOSFET for additional redundancy/internal short protection.
- 4. The current sharing pin B5 is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional analogue bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% (power module load capability). For two units sharing the same 100% load this would read approximately 4VDC for perfect current sharing (i.e. 50% power module load capability per unit).

The load for both the main 12V and the VSB rails at initial startup shall not be allowed to exceed the capability of a single unit. The load can be increased after a delay of 3sec (minimum), to allow all sharing units to achieve steady state regulation.

54mm 1U Front End DC-DC Power Module

54mm 1U Front End DC-DC Power Module

OPTIONAL ACCESSORIES						
Description	Part Number					
12V D1U54P Output Connector Card	D1U54P-12-CONC					
APPLICATION NOTES						

Document Number	Description	Link			
ACAN-64	D1U54P Output Connector Card	http://power.murata.com/datasheet?/data/apnotes/acan-64.pdf			
ACAN-87	D1U54-x Communication Protocol	http://power.murata.com/datasheet?/data/apnotes/acan-87.pdf			

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy. Refer to: <u>http://www.murata-ps.com/requirements/</u> Murata Power Solutions. In: ("Murata") makes no proceediation that the use of its products in the circuits described herein or the use of other technical

Musta Power Solutos, Inc. (Nurata) makes no representation to: Incg//rummaniaratice psycholine requirementers/ Musta Power Solutos, Inc. (Nurata) makes no representation that the use of 1s products in the circuits description Herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and argens that it has all the necessary expertise to create and implement stepuards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate membra lacions. Byere influentia, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

© 2018 Murata Power Solutions, Inc.