muRata P. Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

NB: D1U86-D-1600-12-HB3DC variant shown

FEATURES

1600W output power
93% efficiency at half load
12V main output
12V standby output of 30W
1U height: 3.4" x 7.75" x 1.59"
38.6 Watts per cubic inch density
 N+1 redundancy, including hot plugging (up to 8 in parallel)
Current sharing on 12V main output, ORing FET
 Overvoltage, overcurrent, overtemperature protection
Internal cooling fan (variable speed)
■ TM / I ² C interface monitoring and control
RoHS compliant
Two Year Warranty

PRODUCT OVERVIEW

The D1U86-D-1600-12-HBxDC series are highly efficient 1600 watt, DC input front end supplies with a 12V main output and a 12V (30W) standby. They have current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from overtemperature faults, and have logic and PMBus monitoring and control. Their low profile 1U package and >38.6W/cubic inch power density make them ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems.

ORDERING GUIDE*

Part Number	Power Output	Main Output	Standby Output	Airflow	Handle Colour
D1U86-D-1600-12-HB4DC	1600W	12Vdc	12Vdc	Back to front	Red
D1U86-D-1600-12-HB3DC	TOUUW	12vuc	12vuc	Front to back	Blue

*See www.murata.com/products/power for model-specific availability.

INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Nom.	Max.	Units
Input Voltage Operating Range		-40	-48	-72	Vdc
Turn-on Voltage	Ramp up	-43	-43.5	-44	Vdc
Turn-off Voltage	Ramp down	-38.5	-39	-39.5	Vuc
Maximum Current at Vin = -40Vdc	1600W			47	Adc
DC Line Inrush Peak Current	Cold start between 0 to	40		50	Ank
DC LINE INFUSIT PEAK CUITEIN	200msec	72		100	Apk
	20% load		92		
Efficiency (48V)	50% load		93		%
	100% load		89		

OUTPUT VOI	LTAGE CHARACTERISTICS					
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Voltage Set Point	50% load	12.17	12.20	12.23	Vdc
	Line and Load Regulation		11.4		12.6	VUC
12V	Droop			3.10		mV/A
IZV	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p
	Output Current		0		133.3	А
	Load Capacitance		0		10000	μF
	Voltage Set Point	50% load	11.97	12.0	12.03	Vdc
	Line and Load Regulation		11.4		12.6	VUC
12VSB	Droop			120		mV/A
IZVOD	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p
	Output Current		0		2.5	А
1	Load Capacitance		0		350	μF

¹ Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable with 50Ω scope termination is used.

muRata R Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Output Rise Monotonicity	No voltage excursion				
Startup Time	DC ramp up		1.5	3	S
Transient Deenenee	12V, 50% load step, 1.0A/µs di/dt		600		mV
Transient Response	12VSB, 50% load step, 1.0A/µs di/dt		600		IIIV
Current sharing accuracy (up to 8 in parallel) ²	At 100% load			±5	%
Hot Swap Transients	All outputs remain in regulation			5	%
Holdup Time	At full load (48V input)	1			ms

ENVIRONMENTAL CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Storage Temperature Range		-40		85		
Operating Temperature Range		0		55	°C	
Operating Humidity	Noncondensing	5		90		
Storage Humidity		5		95	%	
Altitude (without derating at 45°C)		3000			m	
Shock	30G non-operating					
Operational Vibration	1G, 10-500Hz, 1.6G (non-operational)					
MTBF	Per Telcordia SR-322 M1C1@ 40°C	500K			hrs	
Safety Approvals	CSA/UL 60950-1-07-2nd Ed. IEC 60950-1:2005 (2nd Edition) w Am. 1:2009 CE Marking per LVD DIRECTIVE 2006/95/EC BIS IS13252(Part 1):2010/ IEC 60950-1: 2005					
Input Fuse	Power Supply has internal 60A/170VDC fast	blow fuse on the	DC line input			
Weight	1.108kg (2.44lbs)					

² The load current of 100% refers to each power module max load connected in an N+1 configuration; therefore the total load will be "N" x 100% load of each module. The share accuracy of ±5% is a fixed percentage irrespective of the total loading and number of units connected in parallel.

PROTECTI	ON CHARACTERISTI	CS

Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Overtemperature (intake)	An OTP warning will be issued via the PMBus interface when the air inlet exceeds 70°C; however the power module shall not shut down until critical internal hotspot temperatures are exceeded.		70		°C
	Overtemperature (hotspots)		55-60			
	Overvoltage	Latching	13.2		14.4	V
12V	Overcurrent	For overloads (slow) over current events a 147A nominal constant current will be sustained until the output voltage drops below 3VDC. At this point the unit shall shut down after a 1sec period and remain in that condition for 10secs. The cycle will then repeat. For severe (short circuit) over current events the unit shall shut down within 1ms and remain in this condition for 200ms before attempting a re-start. the unit shall attempt 10 shutdown/re-start cycles before permanently latching off. It will then be necessary to either recycle the DC input or toggle the PSON# input.	137		154	
101/00	Overvoltage	Latching	13.2		14.4	V
12VSB	Overcurrent	Auto-recovery	2.75		3.0	Α

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Insulation Safety Rating / Test Voltage	Input to Output - Basic	1500			Vdc
Insulation Salety Rating / Test voltage	Input to Chassis - Basic	1500			Vdc
Isolation	Output to Chassis	500			Vdc

muRata R Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

OUTPUT CONNECTOR AND SIGNAL SPECIFICTIONEMISSIONS AND IMMUNITY							
Characteristic	Standard	Compliance					
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A, 6dB margin					
ESD Immunity	IEC/EN 61000-4-2	Level 3 criteria A					
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B					
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 3 criteria A					
Surge Immunity	IEC/EN 61000-4-5	Level 2 criteria B					
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A					
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B					

STATUS AND CONTRO Signal Name	I/0	Description						Inte	erface Details	
PSOK (Output OK)	Output	The PSOK output	hat transitions be as follows:			vever the output is s analogue in nati		Eac pro	the because the buffered and wided with a series or pull up istor:	
		2. PWR_	.good_h Ault l					1.	DC_OK_H; 1K62 series resistor	
		The following is upon the three ir	a "truth table" th nternal logic sign	als:	alogue levels	of operation of the	e signal dependent	2.	PWR_GOOD_H; 3K32 series resistor	
		PSOK TRUTH	TABLE VS. ANAL	OG OUTPUT						
		DC_OK_H	PWR_GOOD_H	PS_FAULT_L	F	SOK	OPERATION MODE	3.	PS_FAULT_L; a 10K pull up resistor to VDD_OR (an internal	
		0	0	1	< 0.1Vdc		No DC Input		derived 3.3VDC rail)	
		0	1	1	(1/3) VDD (2/3) VDD	VDD = 3.3Vdc	Invalid Standby		embedded truth table shows the	
		1	1	1	VDD		Power Good	app	propriate levels.	
		Х	Х	0	0.2-0.4Vdc		PS Fault			
PS_INTERRUPT		The timing relati	onship of this sig	nal is shown in	the Timing Sp	ecification sectior	n that follows.			
(Fault/Warning)		correctly (within The signal will re removed.	specified limits). evert to a high lev	vel when the wa	rning/fault sti	n when the power mulus (that caused	d the alert) is	A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal buffer (o drain output).		
PRESENT#	Output	resistor valu	power module wi out. o designed to cor the host system Main 12Vdc outp pull up resistor is is to be pulled u is to be pulled u ie should be 5.11	of ti folio 1. V Who the	voltage level on the system side he PSPRESENT# signal will be ows: When the power module is not installed the voltage will be the as per the rail to which it is pulled up to (3.3Vdc or 12Vdc) en the power module is installed voltage will be pulled down to 4Vdc ±5%).					
PS_ON (Power Supply Enable/Disable	Input	"enable" the Mai Alternatively the switch between The signal is pull power supply mains the low state the state the state the state the state the state the state	in 12Vdc output. signal can be co "enable/disable" led up internally ain 12Vdc output he signal input s it will be disabled	nnected via the states. to the internal he will be enabled hall source a no I when the input	host system e ousekeeping s when this sig minal 1.2mAc t is driven higl	nal is pulled low to	de the ability to power supply). The p +12V_GND.	A lo A lo	ed up internally via 10K to 3.3Vdc gic high >2.0Vdc gic low <0.8Vdc It is via CMOS Schmitt trigger fer.	

muRata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

Signal Name	I/O	Description			Interface Details			
ADDR (Address Select)	Input	microprocessor) used for digital c	to +12V_GND, in conjunction with a	,	DC voltage between the limits of 0 and +3.3Vdc.			
		HEX Address Combinations by Ar	nalogue ADDR External Resistance '	Value				
		ADDR External Resistance to RTN/Ground	Power Module Secondary Main Controller (Serial Slave	Power Module EEPROM (Serial				
		(KΩ; ±5% Tolerance) 0.82	Address) 0xB0	Slave Address) 0xA0	-			
		2.7	0xB0	0xA0	-			
		5.6	0xB2	0xA2	-			
		8.2	0xB6	0xA6				
		15	0xB8	0xA8	-			
		27	0xBA	0xAA	-			
		56	0xBC	0xAC				
		180	0xBE	0xAE				
SCL (Serial Clock)	Both	Requirements Rev 1.1. No additional internal capacitance The signal is provided with a serie	n PMBus [™] Power Systems Manage e is added that would affect the spe es isolator device to disconnect the powered	eed of the bus.	VIL is 0.8V maximum VOL is 0.4V maximum when sinki 3mA VIH is 2.1V minimum			
SDA (Serial Data)	Both	A serial data line compatible with Requirements Rev 1.1. The signal is provided with a serie	event that the power module is unpowered, A serial data line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,					
IMONITOR	Analogue Voltage	The current monitor signal is an a provided by a single unit. If the puthen the indicated current (propoolf the power module is one of a n indicated current should be consisted to f the indicated current of a For a single unit the voltage of the For two identical units sharing the sharing (i.e. 50% module load ca	Analogue voltage: +8V maximum; 10K to +12V_GND					

ST	STATUS INDICATOR CONDITIONS					
	LED State	Mode	Operating Condition			
1.	Off	DC Turn-off	The incoming DC source is below the minimum power module turn-on specification			
2.	Green – blinking 1Hz	Standby	The power module VStandby output is operating within normal parameters and main output is disabled			
3.	Green – solid	Power-good	The power module VStandby & Main outputs are operating within normal parameters and delivering power			
4.	Yellow – blinking 1Hz	Warning	A warning condition within the power supply has been detected			
5.	Yellow – solid	Fault	A fault condition within the power supply has been detected.			

muRata 🖳 Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

TIMING SPECIFICATIONS				
Parameter	Description	Min	Max	Unit
Tsb_On	Delay from AC being applied to standby output being within regulation	0	3000	ms
Tsb_Vout	Delay from standby output to main output voltage being within regulation	50	500	ms
TPWR_GOOD_On	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
Theat Hold up	Delay from loss of AC to main output being out of regulation	1		me

IPWR_GOOD_On	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
TVout_Hold-up	Delay from loss of AC to main output being out of regulation	1		ms
Tsb_Hold-up	Delay from loss of AC to standby output being out of regulation	20	2000	ms
TPWR_GOOD_OFF	Delay from de-assertion of PWR_GOOD to output falling out of regulation	1		ms
TPSON_On_Delay	Delay from PSON assertion to output being within regulation	300	500	ms

muRata P. Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

CURRENT SHARING NOTES

Main Output: Current share is achieved using the droop method. Nominal output voltage (12.20V) is achieved at 50% load and output voltage changes at a rate of 3.10mv per amp. Startup of parallel power supplies is not internally synchronized. If more than 1600W combined power is needed, start-up synchronization must be provided by using a common PS_ON signal. To account for \pm 5% full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 10% when units are operated in parallel. Internal ORing FETs are provided.

Standby output can be tied together for redundancy but total combined output power must not exceed 30W; Internal MOSFET ORing devices are used.

muRata P. Murata Power Solutions

D1U86-D-1600-12-HBxDC Series

86mm 1U Front End DC-DC Power Supply Converter

- 1. DC input connector: Terminal Block, Dinkle Enterprise: Part No. DT-7C-B14W-02
- 2. Dimensions: 3.4" x 7.75" x 1.59" [86mm x 196.85mm x 39.9mm]
- 3. This drawing is a graphical representation of the product and may not show all fine details.
- 4. Reference File: D1U86-D-1600-12-HBxDC (M1823-M1824)_Drawing for Product Datasheet_20160106.PDF

MATING CONNECTOR					
Part Number	Description				
FCI 10053363-200LF	Right Angle				
FCI 10046971-008LF	Vertical				
OPTIONAL ACCESSORIES					
Description		Part Number			
12V D1U86P Output Connector Card		D1U86P-12-CONC			
APPLICATION NOTES					
Document Number		Description			
ACAN-50		D1U86P Output Connector Card: https://power.murata.com/datasheet?/data/apnotes/acan-50.pdf			
ACAN-54		D1U86D Communication Protocol: https://power.murata.com/datasheet?/data/apnotes/acan-54.pdf			

Murata Power Solutions, Inc. 129 Flanders Road Westborough, MA 01581 ISO 9001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy. Refer to: <u>https://www.murata-ps.com/requirements/</u>

Murata Power Solutions, Inc. ("Murata") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood failures that might cause harm, and take appropriate mendia adatons. Buyer will fully indeminy Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

© 2023 Murata Power Solutions, Inc.