

PSA/PSR Series Positive Switching Regulator

The PSA/PSR Series of positive switching regulators are designed as power supplies for electronic systems when no input-to-output isolation is required. Their major advantages include a high level of efficiency, high reliability, low output ripple, and excellent dynamic response. Models with input voltages up to 144V are especially designed for secondary-switched and battery-driven mobile applications. The regulators are suitable for railway applications according to EN 50155 and EN 50121.

The case design allows for operation up to 71 °C. The PSA/PSR Series are designed for wall or chassis mounting with faston connections or with solder pins for insertion into a PCB.

Various options are available to adapt the regulators to different applications.

FEATURES

- · RoHS lead-free-solder and lead-solder-exempted products are available
- 5 year warranty for RoHS compliant products with an extended temperature range
- · Input voltage up to 144 VDC
- Single output of 5 to 48 VDC
- · No input-to-output isolation
- High efficiency up to 95%
- · Extremely wide input voltage range
- · Low input-to-output differential voltage
- · Very good dynamic properties
- · Input undervoltage lockout
- Output voltage adjustment and inhibit function ٠
- Continuously no-load and short-circuit proof •
- · All boards are coated with a protective lacquer
- Boards or chassis mountable
- Safety-approved to the latest edition of IEC/EN 62368-1 and CSA 60950-1

Electromagnetic Compatibility (EMC)......11 Mechanical Data.....13 Safety and Installation Instructions......14 Description of Options15

25

70

2.8"

1.0"

CE

Tab	le c	of C	ont	en	ts

Description	1
Model Selection	
Functional Description	3
Electrical Input Data	4
Electrical Output Data	
Auxiliary Functions	10

50

YEAR

2.0"

8 - 80 V, 2.5 A

Ø.

ut: === 5 V, 3 A Nel million melectra

PSR53-9

belimi

belfuse.com/power-solutions

Positive Switching Regulator

MODEL SELECTION

Table 1: Model Selection

Output voltage	Output current	Operating input voltage range	Nom. input voltage			Type designation	Options
V _{o nom} [V]	I _{о пот} [А]	<i>V</i> , [V]	V _{o nom} [V]	ղ _{ոո} [%]	η _{max} [%]		
5	2	8 - 80	40	71.5	74	PSR52-7	Y
5	3	8 - 80	40	77	79	PSR53-9G	-7, i, P, R, Y, non-G
5	4	7 - 40	20	82	83	PSR54-9iG	-7, P, R, Y, non-G
5	5	7 - 35	20	81	83	PSA55-9iG	-7, R, Y, non-G
5.1	2	8 - 80	20	75		PSA5A2-2	iRY³
5.1	5	7 - 35	20	83		PSA5A5-2	-7, iRY³
12	1.5	18 - 144 ¹	60	86	87	PSA121.5-9iRG	-7, Y, <mark>non-G</mark>
12	2.5	15 - 80	40	86	87	PSR122.5-9iG	-7, P, R, Y, non-G
12	3	15 - 40	20	89	-	PSA123-2	iRY ³
15	1.5	22 - 144 ¹	60	86	87	PSA151.5-9iRG	-7, Y, <mark>non-G</mark>
15	2.5	19 - 80	40	88	89	PSR152.5-9G	-7, P, R, Y, non-G
15	3	19 - 40	30	90	-	PSA153-2	iRY ³
24	1.5	31 - 144 ¹	60	92	93	PSA241.5-9iRG	-7, Y, non-G
24	2	29 - 80	50	91	92	PSR242-9iG	-7, P, R, Y, non-G
24	2.5	29 - 60	40	93	-	PSA242.5-2G	iRY ³ , non-G
36	1.2	44 - 144 ¹	80	93	95	PSA361-9iRG	-7, Y, <mark>non-G</mark>
36	2	42 - 80	60	92	94	PSR362-9iRG	-7, Y, <mark>non-G</mark>
48	1	58 - 144 ¹	80	93	95	PSA481-9iRG	-7, Y, <mark>non-G</mark>

¹ Surges up to 156 V for 2 s; see *Electrical Input Data*

² Efficiency at $V_{i nom}$ and $I_{o nom}$

³ Options iRY in a package

NFND: Not for new designs.

Preferred for new designs.

Note: The output voltage V_{o} is adjusted to 108% of V_{onom} for all models with option P or R, if they don't have option Y in addition.

Part Number Description

Positive switching regulator in case A01PSA or PSR
Nominal output voltage in Volt5 to 48
Nominal output current in Ampere 1 to 5
Operational ambient temperature range T_A -10 to 50 °C-2 -25 to 50 °C (customer-specific models)-5 -25 to 71 °C (option)-7 -40 to 71 °C-9other (customer-specific models)-0
Inhibit input (standard for all -7 and -9 models)i
Control input for output voltage adjustment ¹ R
Potentiometer ¹ (option, NFND)P
RoHS-compliant for all 6 substancesG

Note: The sequence of options must follow the order above.

Example: PSA121.5-9iRG designates a positive switching regulator with an output 12 V, 1.5 A, ambient temperature –40 to 71 °C, inhibit input, output voltge adjust by R-pin, RoHS-compliant for all 6 substances.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

Customer-Specific Models

Positive switching regulator in case A01 PSA
Nominal output voltage in Volt (without decimals) 12
Decimal places:
0.0 VZ
0.1 V A
0.15 VB
0.2 VC
0.25 VD
0.3 VE
0.4 V F
0.5 VG
0.6 VH
0.7 VJ
0.8 VK
0.9 VL
otherY
Output current in Amperes
Identification characterA, B,
Temperature range and options9iRG

Product Marking

Type designation, applicable safety approval marks, warnings, pin allocation, patent nos., and company logo.

Input voltage range, nominal output voltage and current, pin allocation of auxiliary functions and options, and protection degree. Identification of LED and the optional potentiometer.

Label with input voltage range, nominal output voltage and current, protection degree, batch no., serial no., and data code including production site, version (modification status), date of production.

FUNCTIONAL DESCRIPTION

The switching regulators use the buck converter topology. The input is not electrically isolated from the output. During the on period of the switching transistor, current is transferred to the output, and energy is stored in the output choke. During the off period, this energy forces the current to continue flowing through the output, to the load, and back through the freewheeling diode. Regulation is accomplished by varying the duty cycle (on/off ratio) of the main switch. The regulator starts operating only when the input voltage exceeds the trigger level of the UVL (undervoltage lockout).

These regulators are ideal for a wide range of applications, where input to output isolation is not necessary or is already provided by an external front end (e.g., a transformer with rectifier). To optimize customers' needs, additional options and accessories are available.

Fig. 1 Block diagram. The resistance of the input circuit

tech.support@psbel.com belfuse.com/power-solutions

ELECTRICAL INPUT DATA

General Conditions: T_{A} = 25 °C, unless T_{C} is specified

Table 2a: Input data (-2 models)

Model			PSA55			PSA5A5			PSR54			PSA5A2			Unit
Chara	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V	Operating input voltage		7		35	7		35	7		40	7		40	
$\Delta V_{io min}$	Min. diff. voltage $V_{i} - V_{o}$	$I_{o} = 0 - I_{o \text{ nom}},$			2			1.9			2			2.9	V
V	Undervoltage lockout	$T_{\rm Cmin} - T_{\rm Cmax}$		6.3	6.6		6.3	6.4		6.3	6.5		7.3	7.6	
I _{i0}	No-load input current	$I_{o} = 0, V_{i \min} - V_{i \max}$			45			50			45			50	mA
I _{inr p}	Inrush peak current	V _{i nom}		75			75			75			75		А
R _i	Input resistance			10			10			10			10		mΩ
C _i	Input capacitance			6.8			6.8			6.8			6.8		μF
V _{i RFI}	EN 55011, 0.15 - 30 MHz	V _{i nom} , I _{o nom}		A ¹						A ¹					Class

Table 2b: Input data

Model				PSA12	3		PSA15	3		Unit		
Chara	cteristics	Conditions	min typ max		min	typ	max	min	typ	max		
V	Operating input voltage		15		40	19		40	29		60	
$\Delta V_{io min}$	Min. diff. voltage $V_{\rm i} - V_{\rm o}$	$I_{o} = 0 - I_{o \text{ nom}},$			3			4			5	V
V _{i UVL}	Undervoltage lockout	$T_{\rm Cmin} - T_{\rm Cmax}$		7.3	8.0		7.3	9.0		12	13.7	
I, i 0	No-load input current	$I_{o} = 0, V_{i \min} - V_{i \max}$			50			50			50	mA
I _{inr p}	Inrush peak current	V _{i nom}		75			150			150		Α
R _i	Input resistance			10			10			10		mΩ
C	Input capacitance			6.8			6.8			6.8		μF
V _{i RFI}	EN 55011, 0.15 - 30 MHz	V _{i nom} , I _{o nom}										Class

Table 2c: Input data

Model			PSR52			PSR53			Unit			
Chara	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
V	Operating input voltage		8		80	8		80	15		80	
$\Delta V_{\rm io\ min}$	Min. diff. voltage $V_i - V_o$	$I_{o} = 0 - I_{o \text{ nom}},$			3			3			3	V
V _{i UVL}	Undervoltage lockout	$T_{\rm Cmin} - T_{\rm Cmax}$		7.3	7.6		7.3	7.6		7.3	8	
<i>I</i> _{i0}	No-load input current	$I_{o} = 0, V_{i \min} - V_{i \max}$			40			40			35	mA
I _{inr p}	Inrush peak current	V _{i nom}		150			150			150		Α
R _i	Input resistance			10			10			10		mΩ
C _i	Input capacitance			6.8			6.8			6.8		μF
V _{i RFI}	EN 55011, 0.15 - 30 MHz	V _{i nom} , I _{o nom}		A ²			A ²			A ²		Class

 1 With C $_{\!e}$ = 470 μF / 40 V and input filter FP38; see Accessories. 2 With C $_{\!e}$ = 470 μF / 100 V and input filter FP80; see Accessories.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

Table 2d: Input data. General Conditions as per Table 2a

Model			PSR152.5			PSR242			PSR362			PSA121.5			Unit
Chara	cteristics	Conditions	min typ max r		min	typ	max	min	min typ max		min	typ	max		
V	Operating input voltage		19		80	29		80	42		80	18		144 ¹	
$\Delta V_{io min}$	Min. diff. voltage $V_i - V_o$	$I_{o} = 0 - I_{o \text{ nom}},$			3			4			5			6	V
V _{i UVL}	Undervoltage lockout	$T_{\rm Cmin} - T_{\rm Cmax}$		7.3	9.0		12	13.7		19	20.5		12	12.5	
I, 0	No-load input current	$I_{o} = 0, V_{i \min} - V_{i \max}$			35			35			40			20	mA
I _{inr p}	Inrush peak current	V _{i nom}		150			150			150			150		Α
R _i	Input resistance			10			10			10			10		mΩ
C _i	Input capacitance			6.8			6.8			6.8			2.2		μF
V _{i RFI}	EN 55011, 0.15 - 30 MHz	V _{i nom} , I _{o nom}		A ²			A ²			A ²			A ³		Class

Table 2e: Input data. General Conditions as per table 2a

Model	lodel			PSA151.5			PSA241.5			PSA361			PSA481		
Chara	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V	Operating input voltage		22		144 ¹	31		144 ¹	44		144 ¹	58		144 ¹	
$\Delta V_{io min}$	Min. diff. voltage $V_{i} - V_{o}$	$I_{o} = 0 - I_{o \text{ nom}},$			7			7			8			10	V
V _{i UVL}	Undervoltage lockout	$T_{\rm Cmin} - T_{\rm Cmax}$		18	18.5		22	23		31	32		44	45	
I, 0	No-load input current	$I_{o} = 0, V_{i \min} - V_{i \max}$			20			20			25			25	mA
I _{inr p}	Inrush peak current	V _{i nom}		150			150			150			150		А
R _i	Input resistance			10			10			10			10		mΩ
C	Input capacitance			2.2			2.2			2.2			2.2		μF
V _{i RFI}	EN 55011, 0.15 - 30 MHz	V _{i nom} , I _{o nom}		A ³			A³			A ³			A ³		Class

¹ Surges up to 156 V for 2 s

 2 With $C_{\rm e}$ = 470 $\mu \text{F}/$ 100 V and input filter FP80; see Accessories

³ With $C_{e}^{e} = 2 \times 3.3 \ \mu\text{F} / 250 \ \text{V}$ MKT and input filter FP144; see Accessories

External Input Circuitry

The sum of the lengths of the supply lines to the source or to the nearest capacitor $\ge 100 \ \mu\text{F}(a + b)$ should not exceed 5 m. External input filter is recommended in order to prevent power line oscillations and reduce superimposed interference voltages.

Fig. 2 Switching regulator with long supply lines.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

ELECTRICAL OUT PUT DATA

General conditions:

- $T_A = 25$ °C, unless T_C is specified - R-input open (or V_o set to $V_{o nom}$ with option P)

Table 3a: Output data

Outp	ut				PSA5	5	I	PSA5A	۹5	PSR54			PSA5A2			Unit
Char	acteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output volta	age ¹	V _{i nom} , I _{o nom}	4.97		5.03	5.05		5.15	4.97		5.03	5.05		5.15	V
I _o	Output curr	rent	$V_{i\min} - V_{i\max}$	0		5.0	0		5.0	0		4.0	0		2.0	А
I _{oL}	Output curr	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	5.0		6.5	5.0		6.5	4.0		5.2	2.0		2.6	A
V.	Output voltage	Switching frequency	V _{i nom} , I _{o nom} IEC/EN 61204		20	50			70		15	40			40	mV _{pp}
0	noise	Total	BW = 20 MHz		24	70			100		19	60			60	pp
ΔV _{ov}	Static line r	egulation	$V_{\rm imin} - V_{\rm imax}, I_{\rm onom}$		30	40			40		30	40			40	
ΔV_{o1}	Static load	regulation	$V_{\rm inom}, I_{\rm o} = 0 - I_{\rm onom}$		20	25			25		10	45			20	mV
V _{od}	Dynamic load	Voltage deviation	$V_{i \text{ nom}}$ $I_{o \text{ nom}} \leftrightarrow {}^{1}/{}_{3}I_{o \text{ nom}}$		250			300			200			300		
t _d	regulation	Recovery time	IEC/EN 61204		40			100			40			100		μs
α _{vo}		The coefficient $T_{C \min} - T_{C \max}$)	$V_{i \min} - V_{i \max}$ $I_{o} = 0 - I_{o nom}$			±0.02			±0.02			±0.02			±0.02	%/K

Table 3b: Output data

Outp	out				PSA123	3		PSA15	3		5	Unit	
Chai	acteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V _°	Output volt	age ¹	V _{i nom} , I _{o nom}	11.9		12.1	14.9		15.1	23.8		24.2	V
Ι.	Output curr	rent	$V_{\rm imin} - V_{\rm imax}$	0		3.0	0		3.0	0		2.5	
I _{oL}	Output current limitation		$T_{\rm Cmin} - T_{\rm Cmax}$	3.0		3.9	3.0		3.9	2.5		3.25	A
V _°	Output voltage	Switching frequency	V _{i nom} , I _{o nom} IEC/EN 61204			90			110			150	mV _{pp}
0	noise	Total	BW = 20 MHz			110			150			170	pp
ΔV_{oV}	Static line r	egulation	$V_{\rm i min} - V_{\rm i max}, I_{\rm o nom}$			70			85			180	
ΔV_{ol}	Static load	regulation	$V_{\rm inom}, I_{\rm o} = 0 - I_{\rm onom}$			40			60			140	mV
V _{od}	Dynamic load	Voltage deviation	$V_{i \text{ nom}}$ $I_{o \text{ nom}} \leftrightarrow {}^{1}/{}_{3}I_{o \text{ nom}}$		360			450			720		
t _d	regulation	Recovery time	IEC/EN 61204		120			120			160		μs
α _{vo}		re coefficient $T_{C min} - T_{C max}$)	$V_{i \min} - V_{i \max}$ $I_{o} = 0 - I_{o nom}$			±0.02			±0.02			±0.02	%/K

¹ Models with option R, but without option Y, are adjusted to 108% of $V_{o nom}$. Models with option P are preadjusted to 108% of $V_{o nom}$.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

Table 3c: Output data. General conditions as per table 3a

Outp	out				PSR52			PSR53			PSR122	.5	Unit
Cha	racteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V _o	Output volt	age ¹	V _{i nom} , I _{o nom}	4.97		5.03	4.97		5.03	11.9		12.1	V
Ι.	Output curr	rent	$V_{i\min} - V_{i\max}$	0		2.0	0		3.0	0		2.5	
I _{oL}	Output curr	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	2.0		2.6	3.0		3.9	2.5		3.25	A
V.	Output voltage	Switching frequency	V _{i nom} , I _{o nom} IEC/EN 61204		20	40		20	60		30	70	mV _{pp}
0	noise	Total	BW = 20 MHz		24	60		24	80		35	90	pp
ΔV_{ov}	Static line r	egulation	$V_{\rm imin} - V_{\rm imax}, I_{\rm onom}$		30	40		30	45		30	45	
ΔV_{o1}	Static load	regulation	$V_{\rm inom}, I_{\rm o} = 0 - I_{\rm onom}$		20	25		20	25			40	mV
V _{od}	Dynamic load	Voltage deviation	$V_{i \text{ nom}}$ $I_{o \text{ nom}} \leftrightarrow {}^{1}/{}_{3}I_{o \text{ nom}}$		100			100			180		
t _d	regulation	Recovery time	IEC/EN 61204		50			50			60		μs
α _{vo}		The coefficient $T_{C min} - T_{C max}$	$V_{i \min} - V_{i \max}$ $I_{o} = 0 - I_{o nom}$			±0.02			±0.02			±0.02	%/K

Table 3d: Output data. General conditions as per table 3a

Outp	ut			P	SR15	2.5	I	PSR24	12		PSR36	62	Р	SA12	1.5	Unit
Char	acteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output volta	age 1	V _{i nom} , I _{o nom}	14.91		15.09	23.86		24.14	35.78		36.22	11.93		12.07	V
I _o	Output curr	ent	$V_{i\min} - V_{i\max}$	0		2.5	0		2.0	0		2.0	0		1.5	
I _{oL}	Output current limitation		$T_{\rm C min} - T_{\rm C max}$	2.5		3.25	2.0		2.6	2.0		2.6	1.5		1.9	A
V.	Output voltage	Switching frequency	V _{i nom} , I _{o nom} IEC/EN 61204		40	110		30	150		80	200		20	40	mV _{pp}
0	noise	Total	BW = 20 MHz		50	150		40	170		85	220		24	50	pp
ΔV _{ov}	Static line r	egulation	$V_{\rm imin} - V_{\rm imax}, I_{\rm onom}$		70	85		60	220		200	250		20	80	
ΔV_{o1}	Static load	regulation	$V_{\rm inom}, I_{\rm o} = 0 - I_{\rm onom}$		40	50		90	160		125	160		20	30	mV
V _{od}	Dynamic load	Voltage deviation	$V_{i \text{ nom}} \longrightarrow \frac{1}{3} I_{o \text{ nom}}$		180			210			250			50		
t _d	regulation	Recovery time	IEC/EN 61204		60			80			100			50		μs
α _{vo}	Temperature coefficient $\Delta V_{o} / \Delta T_{c} (T_{c \min} - T_{c \max})$		$V_{i \min} - V_{i \max}$ $I_o = 0 - I_{o nom}$			±0.02			±0.02			±0.02			±0.02	%/K

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

Table 3e: Output data. General conditions as per table 3a

Outp	out			P	SA15	1.5	Р	SA24	1.5		PSA36	61		PSA48	31	Unit
Chai	racteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _°	Output volt	age ¹	V _{i nom} , I _{o nom}	14.91		15.09	23.86		24.14	35.78		36.22	47.71		48.29	V
I.	Output curr	rent	$V_{i \min} - V_{i \max}$	0		1.5	0		1.5	0		1.2	0		1.0	
I _{oL}	Output curr	rent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	1.5		1.9	1.5		1.9	1.2		1.5	1.0		1.3	A
V _o	Output voltage	Switching frequency	V _{i nom} , I _{o nom} IEC/EN 61204		25	50		45	75		45	80		50	75	mV _{pp}
0	noise	Total	BW = 20 MHz		29	60		50	120		50	120		55	120	рр
ΔV _{ov}	Static line r	egulation	$V_{i\min} - V_{i\max}, I_{onom}$		40	40		40	80		80	120		90	120	
ΔV_{ol}	Static load	regulation	$V_{\rm inom}, I_{\rm o} = 0 - I_{\rm onom}$		20	50		30	40		40	80		60	100	mV
V _{od}	Dynamic load	Voltage deviation	$V_{i \text{ nom}}$ $I_{o \text{ nom}} \leftrightarrow {}^{1}/{}_{3}I_{o \text{ nom}}$		50			50			200			300		
t _d	regulation	Recovery time	IEC/EN 61204		50			60			40			100		μs
α _{vo}	Temperature coefficient $\Delta V_o / \Delta T_c \ (T_{c \min} - T_{c \max})$		$V_{i \min} - V_{i \max}$ $I_o = 0 - I_{o nom}$			±0.02			±0.02			±0.02			±0.02	%/K

¹ Models with option R, but without option Y, are adjusted to 108% of V_{o nom}. Models with option P are preadjusted to 108% of V_{o nom}.

Fig. 3 Switching regulator with long supply lines.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

Thermal Considerations

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature T_A = 71 °C and is operated at I_{onom} , the case temperature T_{c} will be about 95°C after the warm-up phase, measured at the measuring point of case temperature $T_{\rm c}$; see Mechanical Data.

Under practical operating conditions, T_A may exceed 71 °C, provided that additional measures (heat sink, fan etc.) are taken to ensure that T_{c} does not exceed T_{c} may.

Fig. 4b Output current versus temperature (models -7 and -9)

Output Protection and Short Circuit Behavior

A voltage suppressor diode, which in worst case conditions fails into a short circuit, protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages.

A constant current limitation circuit holds the output current almost constant, when an overload or a short circuit is applied to the output. It acts self-protecting and recovers automatically after removal of the overload or short-circuit condition.

Parallel and Series Connection

Outputs of equal nominal voltages can be parallel-connected. However, the use of a single regulator with higher output power, is always the better solution.

In parallel-connected operation, one or several outputs may operate continuously at their current limit knee-point which will cause an increase of the heat generation. Consequently, the max. ambient temperature should be reduced by 10 K.

Outputs can be series-connected with any other regulator. In series-connection the maximum output current is limited by the lowest current limitation, but electrically separated source voltages are needed for each regulator.

Fig. 5 Overload and short-circuit behavior V versus I

tech.support@psbel.com belfuse.com/power-solutions

PSA/PSR Series Positive Switching Regulator

AUXILIARY FUNCTIONS

i Inhibit (Remote On / Off)

The inhibit input allows the switching regulator output to be disabled via a control signal. In systems with several converters, this feature can be used, for example, to control the activation sequence of the converters by a logic signal (TTL, C-MOS, etc.). No output voltage overshoot will occur at switch-on.

Note: With open i-pin, the output is enabled.

Fig. 6 Typical inhibit current I_{inh} versus inhibit voltage V_{inh}

Table 4: Inhibit characteristics

Cha	racteristics		Conditions	min	typ	max	Unit
V _{inh}	Inhibit input	$V_{o} = on$	$V_{i\min} - V_{i\max}$	- 10		+0.8	v
	voltage	$V_{o} = off$ $T_{C \min} - T_{C \max}$		+2.4		+50	v
t _r	Switch-on tin	ne	$V_i = V_{i \text{ nom}}$				
t _f	Switch-off tin	ne	$R_{\rm L} = V_{\rm o nom} / I_{\rm o nom}$			ms	
I _{i inh}	Input current inhibited	when	V _i = V _{inom}		10		mA

Fig. 7 Definition of I_{inh} and V_{inh}

Fig. 8 Output response as a function of inhibit signal

LED Output Voltage Indicator

A yellow LED indicator is illuminated, when the output voltage is present (not for -2 models).

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

ELECTROMAGNETIC COMPATIBILITY (EMC)

Electromagnetic Immunity

Table 8: Electromagnetic immunity type tests

Phenomenon	Standard	Level	Coupling mode	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ²
Voltage surge 3	IEC 60571-1			800 V _p	100 µs				
				1500 V _p	50 µs		1 positive and		
		3	i/c, +i/—i	3000 V _p	5 µs	100 Ω	1 negative surge per coupling	yes	В
				4000 V _p	1 µs		mode		
				7000 V _p	100 ns				
Electrostatic	IEC/EN	3 ³	contact discharge	6000 V _p ³	1/50 ns	330 Ω	10 pos. & 10 neg.	yes	B⁵
discharge⁵	61000-4-2	2 4	to case	4000 V _p ⁴	1/50 HS	330 12	discharges	yes	D
Electromagnetic	IEC/EN	х		20 V/m		80 – 1000 MHz			
field	61000-4-3		antenna	20 V/m]		800 – 1000 MHz		
				10 V/m	AM 80% / 1 kHz	N/A	1400 – 2000 MHz	yes	Α
				5 V/m]		2000 – 2500 MHz		
				3 V/m			5100 – 6000 MHz		
Electrical fast transients / burst ⁵	IEC/EN 61000-4-4	3 ³	i/o 1i/ i	2000 V _p	bursts of 5/50 ns; 5 kHz repet. rate; transients with 15 ms	50 Ω	60 s positive 60 s negative		A 5
buist		2 4	i/c, +i/—i	1000 V _p	burst duration; 300 ms period	50 12	transients per coupling mode	yes	
Surges⁵	IEC/EN	2 ³	+i/—i	1000 V _p			5 pos. & 5 neg.		
	61000-4-5	2	+i/—i	1000 V _p	- 1.2 / 50 μs	42 Ω	surges per coupling mode	yes	A ⁵
Conducted	IEC/EN	3 ³	i e einneluuine.	10 VAC ³	AM 000(/ 4 kl k	450.0	450.0 0.45 00.0		
disturbances	61000-4-6	2 4	i, o, signal wires	3 VAC 4	AM 80% / 1 kHz	150 Ω	Ω 0.15 – 80 MHz	yes	A

¹ i = input, o = output, c = case.

² A = Normal operation, no deviation from specifications, B = Normal operation, temporary loss of function or deviation from specs possible

³ Not applicable for -2 models

⁴ Valid for -2 models

⁵ With the filters and input caps as specified in the foot notes of table 2

Electromagnetic Emission

For emission levels refer to Electrical Input Data.

Fig. 9

Typical disturbance voltage (quasi-peak) at the input as per EN 55011, measured at V_{1 nom}, I_{o nom}.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

IMMUNITY TO ENVIRONMENTAL CONDITIONS

Table 6: Mechanical and climatic stress

Test ı	method	Standard	Test Conditions		Status
Cab	Damp heat	IEC/EN 60068-2-78	Temperature:	40 ^{±2} °C	
	steady state	MIL-STD-810D section 507.2	Relative humidity:	93 +2/-3 %	Regulator not operating
			Duration:	56 days	operating
Ea	Shock	IEC/EN 60068-2-27	Acceleration amplitude:	50 g _n = 490 m/s²	_
	(half-sinusoidal)	MIL-STD-810D section 516.3	Bump duration:	11 ms	Regulator operating
			Number of bumps:	18 (3 in each direction)	oporating
Fc	Vibration	IEC/EN 60068-2-6	Acceleration amplitude:	0.35 mm (10 – 60 Hz)	
	(sinusoidal)	MIL-STD-810D section 514.3		5 g _n = 49 m/s² (60 - 2000 Hz)	Regulator
			Frequency (1 Oct/min):	10 – 2000 Hz	operating
			Test duration:	7.5 h (2.5 h in each axis)	
Fda	Random vibration	IEC/EN 60068-2-35	Acceleration spectral density:	0.05 g _n ²/Hz	
	wide band Reproducibility high	DIN 40046 part 23	Frequency band:	20 to 500 Hz	Regulator
			Acceleration magnitude:	4.9 g _{n rms}	operating
			Test duration:	3 h (1 h in each axis)	
Kb	Salt mist cyclic	IEC/EN 60068-2-52	Concentration:	5 % (30 °C)	
	(sodium chloride NaCl solution)		Duration:	2 h per cycle	
			Storage:	40 °C, 93% rel. humidity	Regulator not operating
			Storage duration:	22 h per cycle	oporating
			Number of cycles:	3	

Temperatures

Table 7: Temperature specifications, valid for air pressure of 800 to 1200 hPa (800 to 1200 mbar)

Temp	Temperature			-2 -7 (Op				ר)	-9 (Option)			Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
T _A	Ambient temperature ¹	Regulator operating	- 10		50	- 25		71	- 40		71	
T _c	Case temperature		- 10		80	- 25		95	- 40		95	°C
T _s	Storage temperature ¹	Not operational	- 25		100	- 40		100	- 55		85]

¹ See Thermal Considerations.

Reliability

Table 8: Typical MTBF and device hours

MTBF	Ground benign	Groun	d fixed	Ground mobile	Device hours ¹
Case temperature	<i>T</i> _c = 40 °C	<i>T</i> _c = 40 °C	T _c = 70 °C	<i>T</i> _c = 50 °C	
MTBF accord. to MIL-HDBK-217F	789 000 h	200 000 h	104 000 h	104 000 h	5 100 000 h

¹ Statistical values, based on an average of 4300 working hours per year and in general field use

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

MECHANICAL DATA

Dimensions in mm.

Fig. 10a Case A01, weight 100 g, Aluminum, black anodized and self cooling

Fig. 10

Footprint. a = rectangular slots 3.0 mm x 0.7 mm (or \emptyset 3.0 mm through-plated holes) For option Y preview through-plated holes with \emptyset 1.3 to 1.5 mm for the pins and holes for two M 2.5 fastening screws.

Notes:

Pin i and pin R are only fitted if the regulator exhibits these options. To avoid short circuits with the board, you can use the isolation pad HZZ01203-G; see *Accessories*.

tech.support@psbel.com belfuse.com/power-solutions

SAFETY AND INSTALLATION INSTRUCTIONS

Installation Instruction

Installation must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.

Check for hazardous voltages before connecting.

The input and the output circuit are not separated, i.e. the negative path is internally interconnected.

Do not open the regulator !

Ensure that a regulator failure (e.g. by an internal short-circuit) does not result in a hazardous condition.

Cleaning Liquids

In order to avoid possible damage, any penetration of cleaning fluids must be prevented, since the power supplies are not hermetically sealed.

Protection Degree

The protection degree is IP 30 (IP 20, if equipped with option P). It applies only if the regulator is soldered to the mother board.

Standards and Approvals

All switching regulators have been approved according to the latest edition of IEC/EN 62368-1 and CSA 60950-1

The regulators have been evaluated for:

- Building in
- · The use in a pollution degree 2 environment
- · Connecting the input to a secondary circuit, which is subject to a maximum transient rating of 1500 V.

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned standards and with ISO 9001:2015.

Isolation

Electric strength test voltage between input connected with output against case: 1500 VDC, \geq 1 s (for some PSA/PSR models only with version V103 or higher).

These tests are performed in the factory as routine test in accordance with EN 62911 and IEC/EN 62368-1.

Railway Application

The regulators have been developed observing the railway standards EN 50155 and EN 50121. All boards are coated with a protective lacquer.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

DESCRIPTION OF OPTIONS

-9 Extended Temperature Range

This option defines an extended temperature range as specified in table 7.

R Control (Output Voltage Adjust)

Note: With open R input, $V_{o} \approx V_{o nom}$.

Fig. 11

Voltage adjustment via R-input

The output voltage V_{o} can either be adjusted with an external voltage source (V_{ext}) or with an external resistor $(R_1 \text{ or } R_2)$. The adjustment range is 0 - 108% of $V_{o \text{ nom}}$. The minimum differential voltage $\Delta V_{o \text{ min}}$ between input and output (see *Electrical Input Data*) should be maintained.

a) $V_{o} = 0 - V_{o max}$, using V_{ext} between pins R and Go-:

$$V_{\text{ext}} \approx 2.5 \text{ V} \cdot \frac{V_{\text{o}}}{V_{\text{o nom}}}$$
 $V_{\text{o}} \approx V_{\text{o nom}} \cdot \frac{V_{\text{ext}}}{2.5 \text{ V}}$

Caution: To prevent damage, V_{ext} should not exceed 20 V, nor be negative.

b) $V_{o} = 0$ to $V_{o nom}$, using R_{ext1} between pins R and Go-:

$$R_{\text{ext1}} \approx \frac{4000 \ \Omega \cdot V_{\text{o}}}{V_{\text{o nom}} - V_{\text{o}}} \qquad V_{\text{o}} \approx \frac{V_{\text{o nom}} \cdot R_{\text{ext1}}}{R_{\text{ext1}} + 4000 \ \Omega}$$

c) $V_{o} = V_{o \text{ nom}}$ to $V_{o \text{ max}}$, using R_{ext2} between pins R and Go-: $R_{ext2} \approx \frac{4000 \ \Omega \cdot V_{o} \cdot (V_{o \text{ nom}} - 2.5 \text{ V})}{2.5 \text{ V} \cdot (V0 - V0 \text{ nom})}$

$$V_{o} \approx \frac{V_{o \text{ nom}} \cdot 2.5 \text{ V} \cdot R_{ext2}}{2.5 \text{ V} \cdot (R_{ext2} + 4000 \text{ }\Omega) - V_{o \text{ nom}} \cdot 4000 \text{ }\Omega}$$

Caution: To prevent damage, R_{ext2} should never be less than 47 k Ω .

Note: With option R, the ouput voltage V_o is adjusted to 108% of $V_{o nom}$, if the regulator doesn't have option Y in addition.

P Potentiometer

Option P excludes R function; the R-input (pin 16) should be left open-circuit. The output voltage V_{o} can be adjusted in the range 90 – 108% of $V_{o \text{ nom}}$.

However, the minimum differential voltage ΔV_{iomin} between input and output specified in *Electrical Input Data* must be observed. **Note:** Option P is not recommended, if several regulators are operated in parallel connection.

Y Solder Pins

Models with rectangular pins 1.0 \times 0.5 mm (length 6.5 mm). Such regulators can be fitted to PCB boards (through-plated holes with \emptyset 1.3 to 1.5 mm).

G RoHS Compliance

Models with G are RoHS-compliant for all six substances.

tech.support@psbel.com belfuse.com/power-solutions

Positive Switching Regulator

ACCESSORIES

A variety of electrical and mechanical accessories are available including:

- Filters and ring core chockes for ripple and interference reduction; see table 9.
- Tags and isolation pads for easy and safe PCB-mounting
- Adapters for chassis and DIN-rail mounting

Isolation Pads for PCB Mounting

In applications, where PCB mounting converters are placed on top of double sided boards, the use of an isolation pad is recommended. This fibre foil avoids short circuits and provide excellent protection against possible damage to tracks.

Fig. 12

Isolation pad HZZ01203-G (ISOLATIONA, A01); 0.3 mm thick

Input Filters

Different input filters are available; see table 9.

Table 9: Input filters FP. $T_A = 25$ °C unless otherwise specified

Chara	acteristics	Conditions		FP 38 ²			FP 80		FP 144			Unit
			min	typ	max	min	typ	max	min	typ	max	1
I _{Fn}	Rated current ¹	L = 0.75 L _o		4			4			2		Α
V _{Fn}	Rated voltage	$T_{\rm Cmin} - T_{\rm Cmax}$	5		40	5		80	15		144	VDC
R _F	Ohmic resistance		18	20	22	18	20	22	90	95	100	mΩ
L	No load inductance	$I_{\rm L} = 0, T_{\rm C min} - T_{\rm C max}$	30	34	38	30	34	38	88	100	112	μH
T _A	Ambient temperature	$I_{\rm F} = I_{\rm Fn}$	- 40		80	- 40		80	- 40		95	
T _c	Case temperature]	- 40		92	- 40		92	- 40		98] °C
T _s	Storage temperature	Not operational	- 40		100	- 40		100	- 55		100	

¹ For currents $I_{\rm F} > 4$ A the following derating takes place: $T_{\rm A max} = 100 - 1.3 \cdot I_{\rm F}^2$ [°C], $T_{\rm C max} = 100 - 0.49 \cdot I_{\rm F}^2$ [°C]. ² FP 38 is obsolete.

tech.support@psbel.com belfuse.com/power-solutions

BCD20025-G Rev AG, 13 April 2022

MELCHER[™] The Power Partners.

Positive Switching Regulator

Fig. 13 Different filters

Fig. 14

Fig. 15 Mechanical data of the FP filter. Weight approx. 30 g

Mounting Supports

Connection of the FP filter

Different mounting supports for DIN-rail and chassis mountig are described in the <u>Mounting Supports</u> data sheet on our web site. They also allow for fitting additional components.

Fig. 16 Adapter for chassis mounting

For additional accessory product information, see the accessory data sheets listed with each product series at our web site.

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

tech.support@psbel.com belfuse.com/power-solutions