Bipolar Power Transistors

NPN Silicon

Features

- Epoxy Meets UL 94, V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

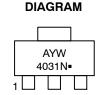
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CB}	40	Vdc
Emitter-Base Voltage	V _{EB}	6.0	Vdc
Base Current – Continuous	I _B	1.0	Adc
Collector Current - Continuous	I _C	3.0	Adc
Collector Current - Peak	I _{CM}	5.0	Adc
ESD - Human Body Model	НВМ	3B	V
ESD - Machine Model	MM	С	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Power Dissipation Total P _D @ T _A = 25°C (Note 1) Total P _D @ T _A = 25°C (Note 2)	P _D	2.0 0.80	W
Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$egin{array}{c} R_{ heta JA} \ R_{ heta JA} \end{array}$	64 155	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 55 to + 150	°C

- 1. Mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material.
- 2. Mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material.


ON Semiconductor®

http://onsemi.com

NPN TRANSISTOR 3.0 AMPERES 40 VOLTS, 2.0 WATTS

MARKING

A = Assembly Location

Y Year

W = Work Week

4031N = Specific Device Code ■ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NJT4031NT1G	SOT-223	1000 / Tape &
NJV4031NT1G	(Pb-Free)	Reel
NJT4031NT3G	SOT-223	4000 / Tape &
NJV4031NT3G	(Pb-Free)	Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc)	V _{CEO(sus)}	40	-	-	Vdc
Emitter–Base Voltage ($I_E = 50 \mu Adc$, $I_C = 0 Adc$)	V _{EBO}	6.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc)	I _{CBO}	-	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 6.0 Vdc)	I _{EBO}	-	-	100	nAdc
ON CHARACTERISTICS (Note 3)					
Collector–Emitter Saturation Voltage ($I_C = 0.5 \text{ Adc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}$, $I_B = 0.3 \text{ Adc}$)	V _{CE(sat)}	- - -	- - -	0.100 0.150 0.300	Vdc
Base–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc)	V _{BE(sat)}	-	-	1.0	Vdc
Base-Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	-	1.0	Vdc
DC Current Gain $ \begin{aligned} &(I_C=0.5 \text{ Adc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=1.0 \text{ Adc, V}_{CE}=1.0 \text{ Vdc}) \\ &(I_C=3.0 \text{ Adc, V}_{CE}=1.0 \text{ Vdc}) \end{aligned} $	h _{FE}	220 200 100	- - -	500	
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{ob}	-	25	-	pF
Input Capacitance (V _{EB} = 5.0 Vdc, f = 1.0 MHz)	C _{ib}	-	170	-	pF
Current-Gain - Bandwidth Product (Note 4) (I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz)	f _T	-	215	-	MHz

^{3.} Pulse Test: Pulse Width \leq 300 $\mu\text{s}, \text{ Duty Cycle} \leq$ 2%.

^{4.} $f_T = |h_{FE}| \bullet f_{test}$

TYPICAL CHARACTERISTICS

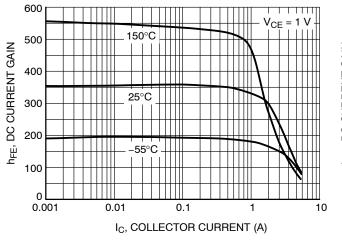


Figure 2. DC Current Gain

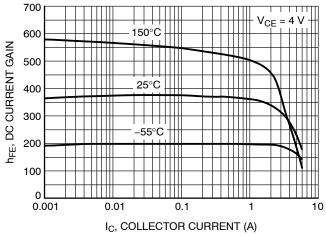


Figure 3. DC Current Gain

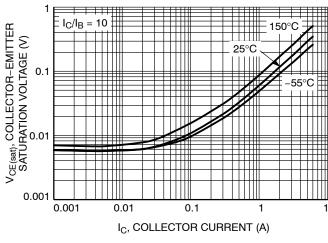


Figure 4. Collector-Emitter Saturation Voltage

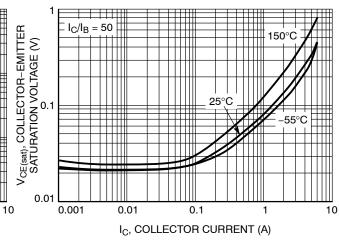


Figure 5. Collector-Emitter Saturation Voltage

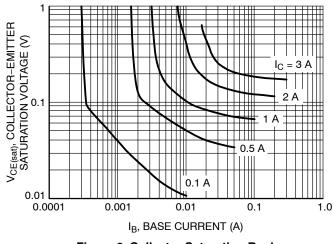


Figure 6. Collector Saturation Region

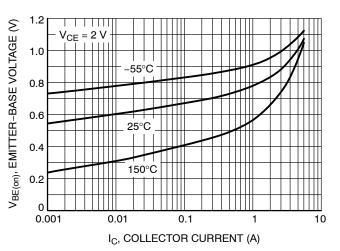


Figure 7. V_{BE(on)} Voltage

TYPICAL CHARACTERISTICS

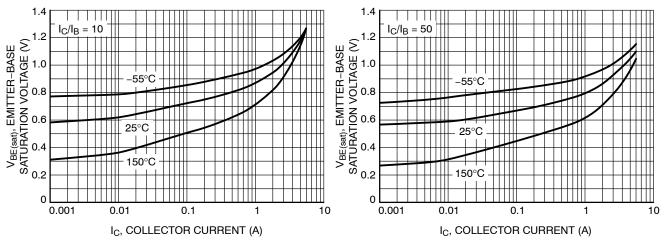


Figure 8. Base-Emitter Saturation Voltage

Figure 9. Base-Emitter Saturation Voltage

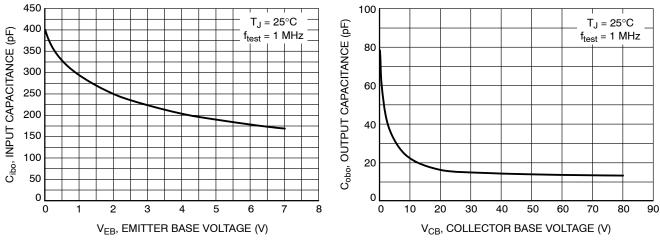
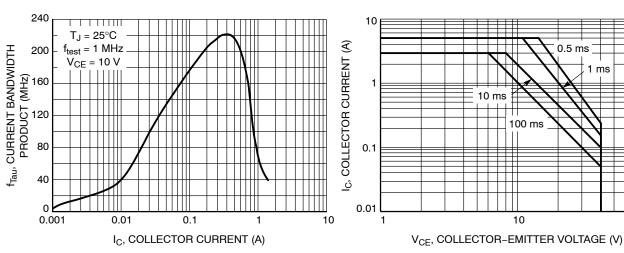
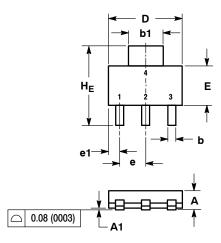
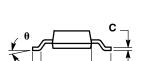


Figure 10. Input Capacitance

Figure 11. Output Capacitance




Figure 12. Current-Gain Bandwidth Product

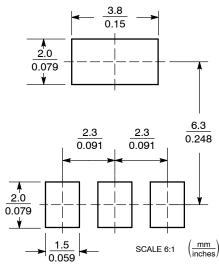

Figure 13. Safe Operating Area

100

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.


	MILLIMETERS					
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	_	10°

STYLE 1:

- PIN 1. BASE
 - COLLECTOR EMITTER 2.

 - COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative