High-Power NPN Silicon Transistor

High–power NPN silicon transistors are for use in power amplifier and switching circuits applications.

Features

- Low Collector–Emitter Saturation Voltage $V_{CE(sat)} = 0.75 \text{ Vdc (Max)} @ I_C = 10 \text{ Adc}$
- Pb-Free Package is Available*

MAXIMUM RATINGS (Note 1) ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V_{CB}	60	Vdc
Collector Current – Continuous (Note 2)	I _C	30	Adc
Base Current	Ι _Β	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\theta_{\sf JC}$	0.875	°C/W
Thermal Resistance, Case-to-Ambient	$\theta_{\sf CA}$	34	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Indicates JEDEC Registered Data.
- 2. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

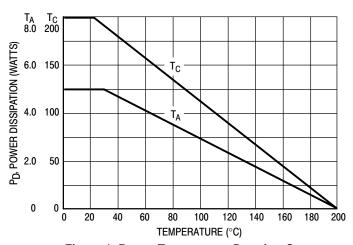


Figure 1. Power Temperature Derating Curve

ON Semiconductor®

http://onsemi.com

30 AMPERES POWER TRANSISTOR NPN SILICON 60 VOLTS, 200 WATTS

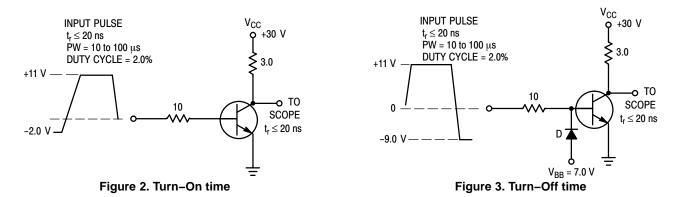
TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

2N5302 = Device Code
G = Pb-Free Package
A = Location Code

YY = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION


Device	Package	Shipping
2N5302	TO-204	100 Units/Tray
2N5302G	TO-204 (Pb-Free)	100 Units/Tray

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

	Characteristic	Sy	mbol	Mi	n	Ма	Х	Unit
OFF CHARACTERIST	ICS (Note 3)	ı					1	
Collector–Emitter Sustaining Voltage (Note 4) $(I_C = 200 \text{ mAdc}, I_B = 0)$			EO(sus)	60)	_		Vdc
Collector Cutoff Curren (V _{CE} = 60 Vdc, I _B =	ollector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)			I _{CEO} –		5.0		mAdc
Collector Cutoff Curren (V _{CE} = 60 Vdc, V _{EB}	Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 1.5 Vdc)			I _{CEX} -		1.0		mAdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 1.5 Vdc, T _C = 150°C)			I _{CEX} –			10		mAdc
Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)			СВО	-		1.0		mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)			EBO	_		5.)	mAdc
ON CHARACTERISTIC	cs	•			•		•	
DC Current Gain (Note 4)			h _{FE}	40 15 5.0	5	- 60 -)	-
*Collector–Emitter Saturation Voltage (Note 4) (I_C = 10 Adc, I_B = 1.0 Adc) (I_C = 20 Adc, I_B = 2.0 Adc)2 (I_C = 30 Adc, I_B = 6.0 Adc)		V ₍	V _{CE(sat)} – – – – –			0.7 2.1 3.1	0	Vdc
*Base Emitter Saturation Voltage (Note 4) ($I_C = 10$ Adc, $I_B = 1.0$ Adc) ($I_C = 15$ Adc, $I_B = 1.5$ Adc) ($I_C = 20$ Adc, $I_B = 2.0$ Adc)		VE	V _{BE} (sat)			1. 1. 2.	3	Vdc
*Base-Emitter On Voltage (Note 4) (I _C = 15 Adc, V _{CE} = 2.0 Vdc) (I _C = 30 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)} –		- - - 3.0			Vdc	
DYNAMIC CHARACTE	ERISTICS (Note 3)							
Current-Gain - Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)			f _T 2.0		.0 –			MHz
Small–Signal Current Gain (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)			h _{fe} 40		40 –			-
SWITCHING CHARAC	TERISTICS (Note 3)					_		
Rise Time				t _r		- 1.		μs
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = 1.0 \text{ Adc})$	Adc) t_s t_f		t _s –			2.0	μs
Fall Time					-		1.0	μs

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Indicates JEDEC Registered Data.
 Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

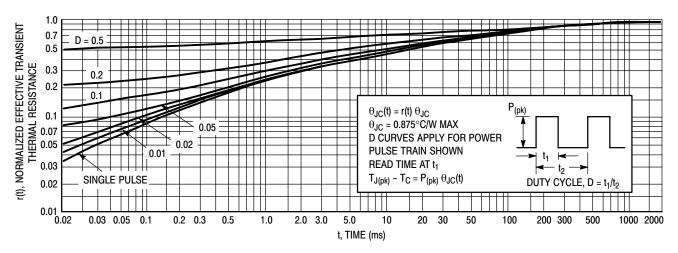


Figure 4. Thermal Response

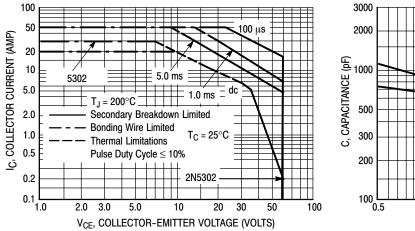


Figure 5. Active-Region Safe Operating Area

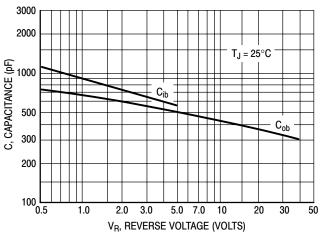


Figure 6. Capacitance versus Voltage

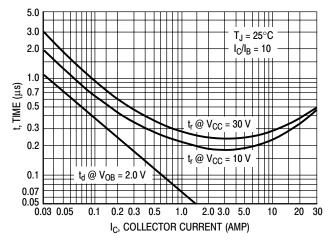


Figure 7. Turn-On Time

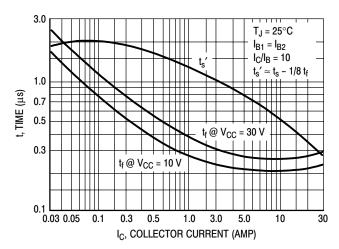


Figure 8. Turn-Off Time

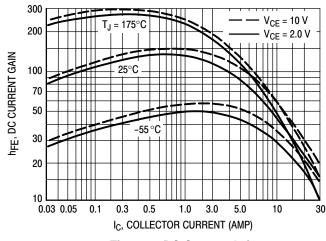


Figure 9. DC Current Gain

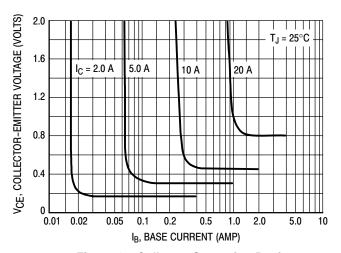


Figure 10. Collector Saturation Region

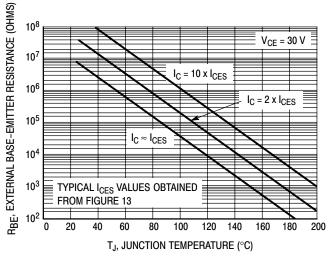


Figure 11. Effects of Base-Emitter Resistance

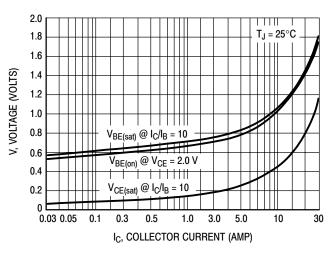


Figure 12. "On" Voltages

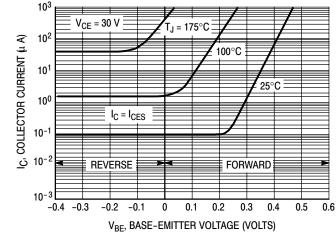


Figure 13. Collector Cut-Off Region

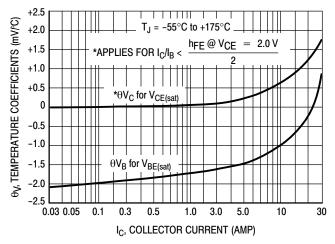
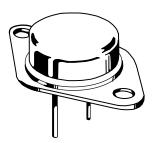
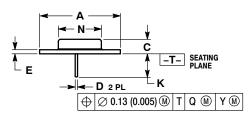
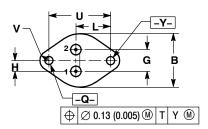



Figure 14. Temperature Coefficients





TO-204 (TO-3) CASE 1-07 ISSUE Z

DATE 10 MAR 2000

SCALE 1:1

CASE: COLLECTOR

CASE: CATHODE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH
 REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37	REF
В		1.050		26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430	0.430 BSC		BSC
Н	0.215	0.215 BSC		BSC
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89	BSC
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15 BSC	
٧	0.131	0.188	3.33	4.77

STYLE 2: PIN 1. BASE 2. COLLECTOR STYLE 3: PIN 1. GATE 2. SOURCE STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE STYLE 4: PIN 1. GROUND 2. INPUT STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR CASE: EMITTER CASE: DRAIN CASE: OUTPUT STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. CATHODE #1 2. CATHODE #2 PIN 1. GATE 2. EMITTER PIN 1. ANODE 2. OPEN PIN 1. ANODE #1 2. ANODE #2

CASE: CATHODE

CASE: ANODE

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15G11 if are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales