Preferred Device

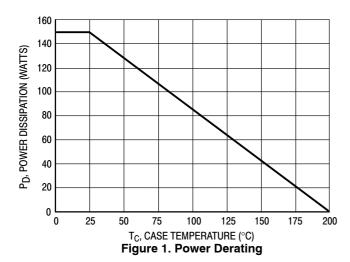
Darlington Complementary Silicon Power Transistors

This package is designed for general-purpose amplifier and low frequency switching applications.

Features

- High DC Current Gain $h_{FE} = 3500$ (Typ) @ $I_C = 5.0$ Adc
- Collector–Emitter Sustaining Voltage @ 100 mA V_{CEO(sus)} = 100 Vdc (Min)
- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- This is a Pb-Free Device*

MAXIMUM RATINGS (Note 1)

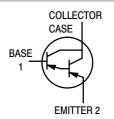

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current - Continuous Peak	I _C	12 20	Adc
Base Current	Ι _Β	0.2	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	150 0.857	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.17	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates JEDEC Registered Data.



ON Semiconductor®

http://onsemi.com

12 AMPERE COMPLEMENTARY SILICON POWER TRANSISTOR 100 VOLTS, 150 WATTS

MARKING DIAGRAM

TO-204AA (TO-3) CASE 1-07 STYLE 1

 2N6052
 = Device Code

 G
 = Pb-Free Package

 A
 = Location Code

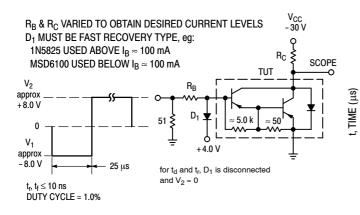
 YY
 = Year

 WW
 = Work Week

 MEX
 = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
2N6052G	TO-3 (Pb-Free)	100 Units/Tray


Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (Note 2)

Chara	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		•	•	•	•
Collector-Emitter Sustaining Voltage (Note	e 3) (I _C = 100 mAdc, I _B = 0)	V _{CEO(sus)}	100	-	Vdc
Collector Cutoff Current	(V _{CE} = 50 Vdc, I _B = 0)	I _{CEO}	-	1.0	mAdc
Collector Cutoff Current (V _{CE} = Ra	I _{CEX}	_ _	0.5 5.0	mAdc	
Emitter Cutoff Current	$(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS (Note 3)					_
DC Current Gain	$(I_C = 6.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc})$ $(I_C = 12 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc})$	h _{FE}	750 100	18,000	_
Collector-Emitter Saturation Voltage	(I _C = 6.0 Adc, I _B = 24 mAdc) (I _C = 12 Adc, I _B = 120 mAdc)	V _{CE(sat)}	_ _ _	2.0 3.0	Vdc
Base-Emitter Saturation Voltage	(I _C = 12 Adc, I _B = 120 mAdc)	V _{BE(sat)}	-	4.0	Vdc
Base-Emitter On Voltage	$(I_C = 6.0 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc})$	V _{BE(on)}	-	2.8	Vdc
DYNAMIC CHARACTERISTICS		•			
Magnitude of Common Emitter Small-Sign Current Transfer Ratio	al Short Circuit Forward (I _C = 5.0 Adc, V _{CE} = 3.0 Vdc, f = 1.0 MHz)	h _{fe}	4.0	_	MHz
Output Capacitance	(V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}	-	500	pF
Small-Signal Current Gain	(I _C = 5.0 Adc, V _{CE} = 3.0 Vdc, f = 1.0 kHz)	h _{fe}	300	_	-

Indicates JEDEC Registered Data.
 Pulse test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

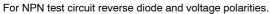


Figure 2. Switching Times Test Circuit

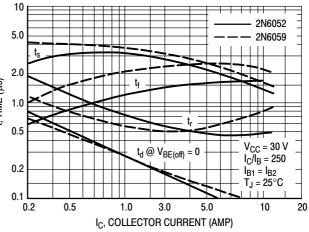


Figure 3. Switching Times

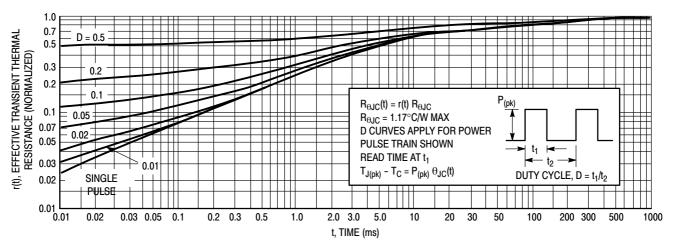


Figure 4. Thermal Response

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 5, and 6 is based on $T_{J(pk)} = 200^{\circ} C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 200^{\circ} C$; $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

ACTIVE-REGION SAFE OPERATING AREA

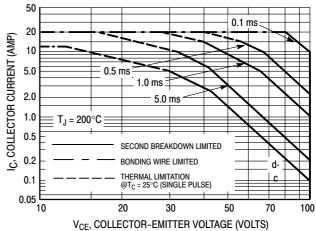


Figure 5.

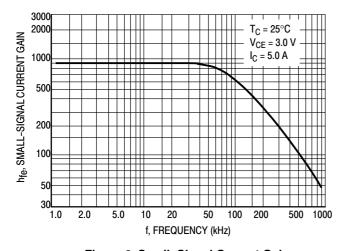


Figure 6. Small-Signal Current Gain

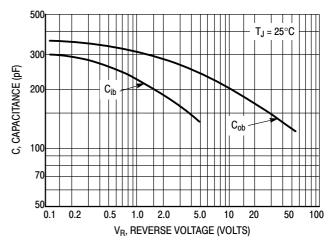


Figure 7. Capacitance

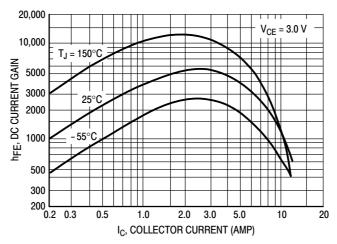


Figure 8. DC Current Gain

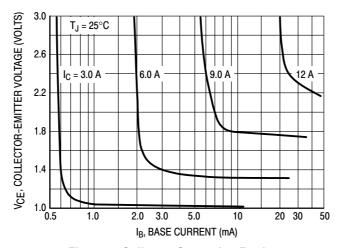


Figure 9. Collector Saturation Region

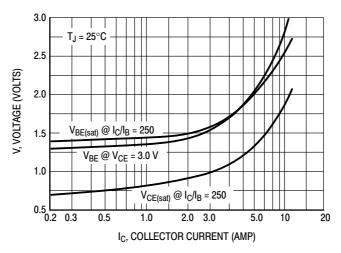
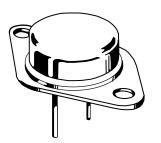
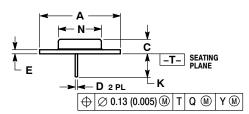
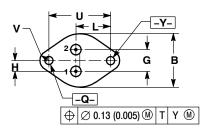



Figure 10. "On" Voltages





TO-204 (TO-3) CASE 1-07 ISSUE Z

DATE 10 MAR 2000

SCALE 1:1

CASE: COLLECTOR

CASE: CATHODE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH
 REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37 REF	
В		1.050		26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
٧	0.131	0.188	3.33	4.77

STYLE 2: PIN 1. BASE 2. COLLECTOR STYLE 3: PIN 1. GATE 2. SOURCE STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE STYLE 4: PIN 1. GROUND 2. INPUT STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR CASE: EMITTER CASE: DRAIN CASE: OUTPUT STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. CATHODE #1 2. CATHODE #2 PIN 1. GATE 2. EMITTER PIN 1. ANODE 2. OPEN PIN 1. ANODE #1 2. ANODE #2

CASE: CATHODE

CASE: ANODE

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15G11 if are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the office of states and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales