

PNP Silicon General Purpose High Voltage Transistor

MSB92WT1G, MSB92AWT1G

This PNP Silicon Planar Transistor is designed for general purpose amplifier applications. This device is housed in the SC-70/SOT-323 package which is designed for low power surface mount applications.

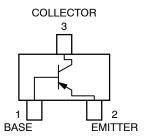
Features

 These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Symbol	Rating	Value	Unit
V _{(BR)CBO}	Collector-Base Voltage	-300	Vdc
V _{(BR)CEO}	Collector-Emitter Voltage	-300	Vdc
V _{(BR)EBO}	Emitter-Base Voltage	-5.0	Vdc
I _C	Collector Current - Continuous	500	mAdc
ESD	Electrostatic Discharge	MBM > 16,000, MM > 2,000	V

THERMAL CHARACTERISTICS


Symbol	Rating	Max	Unit
P _D	Power Dissipation (Note 1)	150	mW
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

SC-70 (SOT-323) CASE 419 STYLE 3

MARKING DIAGRAM

xx = Device Code x= 2D or D2

M = Date Code*■ = Pb-Free Package

on manufacturing location.

(Note: Microdot may be in either location)
*Date Code orientation may vary depending up-

ORDERING INFORMATION

Device	Package	Shipping [†]
MSB92WT1G	SC-70/ SOT-323 (Pb-Free)	3,000/Tape & Reel
MSB92AWT1G	SC-70/ SOT-323 (Pb-Free)	3,000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MSB92WT1G, MSB92AWT1G

ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Min	Max	Unit
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	-300	-	Vdc
V _{(BR)CBO}	Collector-Base Breakdown Voltage ($I_C = -100 \mu Adc$, $I_E = 0$)	-300	-	Vdc
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc, I_E = 0$)	-5.0	-	Vdc
Ісво	Collector-Base Cutoff Current (V _{CB} = -200 Vdc, I _E = 0)	-	-0.25	μΑ
I _{EBO}	Emitter-Base Cutoff Current (V _{EB} = -3.0 Vdc, I _B = 0)	-	-0.1	μΑ
h _{FE1} h _{FE1} h _{FE2} h _{FE3}	DC Current Gain (Note 2) $ \begin{array}{lll} \text{MSB92WT1:} & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{I}_{\text{C}} = -1.0 \text{ mAdc}) \\ \text{MSB92AWT1:} & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{I}_{\text{C}} = -1.0 \text{ mAdc}) \\ & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{I}_{\text{C}} = -10 \text{ mAdc}) \\ & (\text{V}_{\text{CE}} = -10 \text{ Vdc}, \text{I}_{\text{C}} = -30 \text{ mAdc}) \\ \end{array} $	25 120 40 25	_ 200 _ _	1
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 2) ($I_C = -20$ mAdc, $I_B = -2.0$ mAdc)	-	-0.5	Vdc
V _{BE(sat)}	Base–Emitter Saturation Voltage ($I_C = -20$ mAdc, $I_B = -2.0$ mAdc)	_	-0.9	Vdc

SMALL SIGNAL CHARACTERISTICS

f _T	Current – Gain – Bandwidth Product $(I_C = -10 \text{ mAdc}, V_{CE} = -20 \text{ Vdc}, f = 20 \text{ MHz})$	50	-	MHz
C _{cb}	Collector-Base Capacitance (V _{CB} = -20 Vdc, I _E = 0, f = 1.0 MHz)	-	6.0	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, D.C. \leq 2%.

MSB92WT1G, MSB92AWT1G

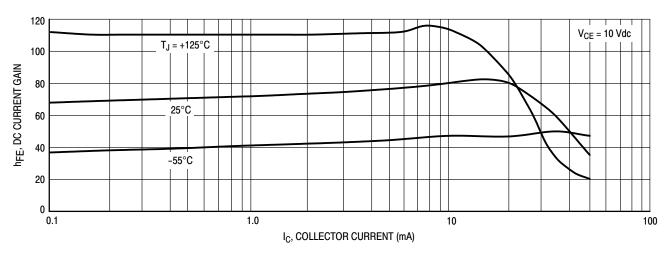


Figure 1. DC Current Gain

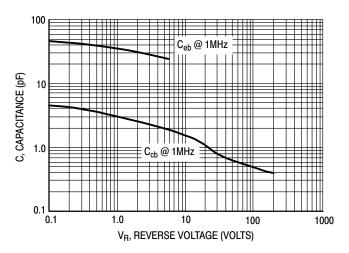
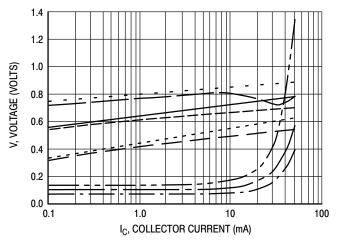
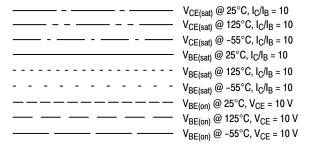
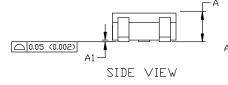
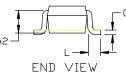




Figure 2. Capacitance

SC-70 (SOT-323) CASE 419 ISSUE R

DATE 11 OCT 2022


NOTES:

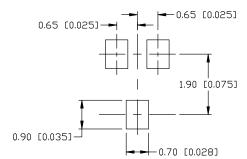

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF 0.028 BSC			C	
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

SCALE 4:1

TOP VIEW

GENERIC MARKING DIAGRAM



XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
3. COLLECTOR	3. COLLECTOR	3. DRAIN	3. CATHODE-ANODE	3. ANODE-CATHODE	3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales