

Automotive-grade 1200 V SCR AC/DC converter applications

These 1200 V, high temperature automotive-grade thyristors make AC/DC converters safer by limiting the inrush current and providing functional isolation against AC line overvoltage

Available in through-hole and surface-mount packages (SMD), ST automotive-grade silicon-controlled rectifiers (SCR Thyristors), are suitable for automotive / stationary battery chargers, renewable energy generators, uninterruptible power supplies, solid-state relays, welding equipment and motor drive applications.

• The TN5050H-12WY in a TO-247 package offers superior performance in surge current handling ($I_{TSM} = 580$ A at 10 ms), thermal cooling capabilities ($R_{th(I-c)} = 0.3$ °C/W) and high surge voltage withstanding capability ($V_{DSM}/V_{RSM} = 1300$ V).

• The 30 A TN3050H is available in a TO-247 for high thermal cooling performance or a D²PAK SMD package for automated assembly and compact design boards.

KEY FEATURES

- On-state RMS current: 30-50 A
- Blocking voltage: 1200 V
- High turn on robustness : 200 A/µs
- High off-state immunity: 1000 V/µs
- Gate trigger current: 50 mA
- ECOPACK[®]2 compliant

KEY BENEFITS

- Automotive grade: reliability, quality and AEC-Q101 compliance
- Reduce BOM: extra power device no longer needed in the rectifier bridge
- Same efficiency/dissipation and cooling size as diode bridge
- High PCB creepage distance above 4mm
- Control peak current at charger power up

TARGETED APPLICATIONS

- EV/HEV (on board, off board battery chargers)
- Industrial battery chargers
- Renewable energy inverters
- Solid state relays
- Uninterruptible power supplies (bypass)
- Motor drives (inrush current limiter, soft start)
- · Industrial welding system

AUTOMOTIVE SCR IN BRIEF

AUTOMOTIVE SCR PRODUCT TABLE

Part number	Package	Junction temperature T _j	Repetitive peak off-state voltage V _{DRM} ,V _{RRM}	RMS on-state current I _{T(RMS)}	Non- repetitive surge-peak on-state current (@ tp= 10 ms) L _{TSM}	Triggering gate current I _{ct}	Peak on-state voitage V _{TM}	Maximum leakage current (@T _j =25°C I _{DRM} , I _{RRM})	Critical rate of rise of off-state voltage dV/dt	Junction- to-case thermal resistance R _{th(i-c)}
		Max. (°C)	Max. (V)	(A)	Max. (A)	Max. (mA)	Max. (V)	Max. (µA)	Min. (V/ µs)	(°C/W)
TN3050H-12GY	D ² PAK	150	1200	30	300	50	1.65	5	1000	0.8
TN3050H-12WY	T0-247	150	1200	30	300	50	1.65	5	1000	0.3
TN5050H-12WY	T0-247	150	1200	50	580	50	1.55	5	1000	0.3

Application note AN4606 with additional information about the inrush current limiter function in triacs and thyristors (SCR) is available on www.st.com

© STMicroelectronics - June 2017 - Printed in United Kingdom - All rights reserved The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies All other names are the property of their respective owners

