

Complementary Dual General Purpose Amplifier Transistor

HN1B01FDW1T1G, SHN1B01FDW1T1G

PNP and NPN Surface Mount

Features

• High Voltage and High Current: $V_{CEO} = 50 \text{ V}$, $I_C = 200 \text{ mA}$

• High h_{FE}: $h_{FE} = 200 \sim 400$

• Moisture Sensitivity Level: 1

• ESD Rating

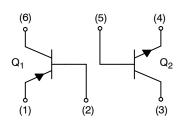
• Human Body Model: 3A

• Machine Model: C

 S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

 These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS (T_A = 25°C)


Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{(BR)CBO}	60	Vdc
Collector-Emitter Voltage	V _{(BR)CEO}	50	Vdc
Emitter-Base Voltage	V _{(BR)EBO}	7.0	Vdc
Collector Current - Continuous	I _C	200	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Power Dissipation	P_{D}	380	mW
Junction Temperature	TJ	150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

MARKING DIAGRAM

R9 = Specific Device Code

= Date Code

= Pb-Free Package

ORDERING INFORMATION

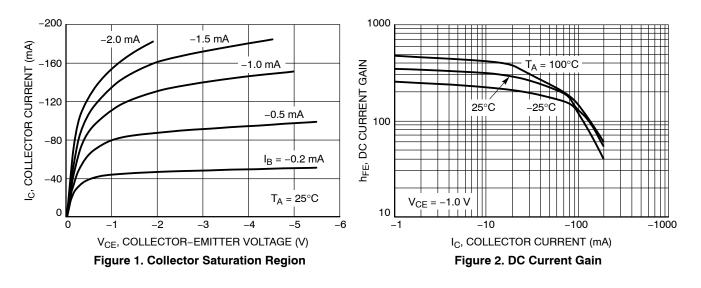
Device	Package	Shipping [†]
HN1B01FDW1T1G	SC-74 (Pb-Free)	3,000/Tape & Reel
SHN1B01FDW1T1G	SC-74 (Pb-Free)	3,000/Tape & Reel

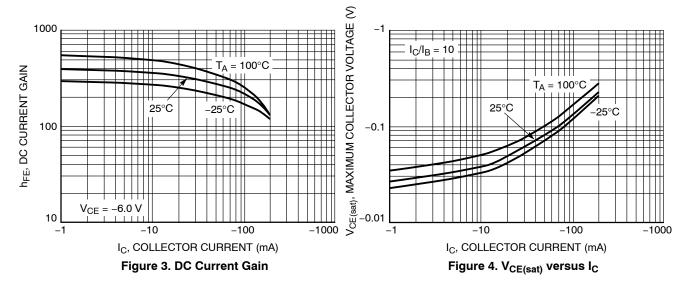
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

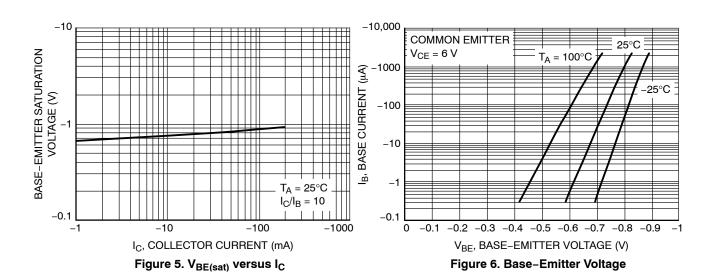
^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Q1: PNP ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _B = 0)	V _{(BR)CEO}	-50	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	-60	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	-7.0	-	Vdc
Collector–Base Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)	I _{CBO}	-	-0.1	μAdc
Collector–Emitter Cutoff Current $ (V_{CE} = 10 \text{ Vdc}, I_B = 0) $ $ (V_{CE} = 30 \text{ Vdc}, I_B = 0) $ $ (V_{CE} = 30 \text{ Vdc}, I_B = 0, T_A = 80^{\circ}\text{C}) $	I _{CEO}	- - -	-0.1 -2.0 -1.0	μAdc μAdc mAdc
DC Current Gain (Note 1) (V _{CE} = 6.0 Vdc, I _C = 2.0 mAdc)	h _{FE}	-200	-400	-
Collector–Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	-	-0.3	Vdc


Q2: NPN


ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Breakdown Voltage ($I_C = 2.0 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	50	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	60	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	7.0	-	Vdc
Collector-Base Cutoff Current $(V_{CB} = 45 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	0.1	μAdc
Collector–Emitter Cutoff Current $(V_{CE} = 10 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 30 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 30 \text{ Vdc}, I_B = 0, T_A = 80^{\circ}\text{C})$	I _{CEO}	- - -	0.1 2.0 1.0	μAdc μAdc mAdc
DC Current Gain (Note 1) $(V_{CE} = 6.0 \text{ Vdc}, I_C = 2.0 \text{ mAdc})$	h _{FE}	200	400	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	-	0.25	Vdc

^{1.} Pulse Test: Pulse Width ≤ 300 μs, D.C. ≤ 2%.

TYPICAL ELECTRICAL CHARACTERISTICS: PNP TRANSISTOR

TYPICAL ELECTRICAL CHARACTERISTICS: NPN TRANSISTOR

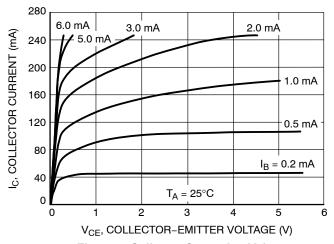


Figure 7. Collector Saturation Voltage

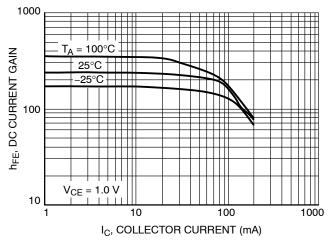


Figure 8. DC Current Gain

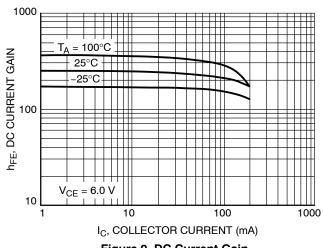


Figure 9. DC Current Gain

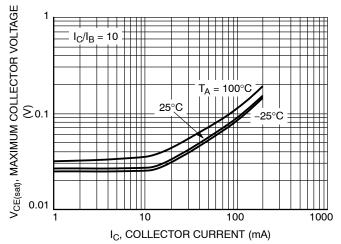


Figure 10. V_{CE(sat)} versus I_C

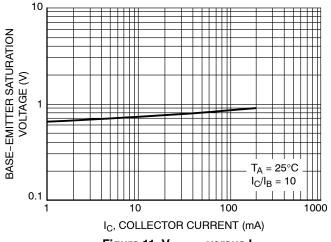


Figure 11. V_{BE(sat)} versus I_C

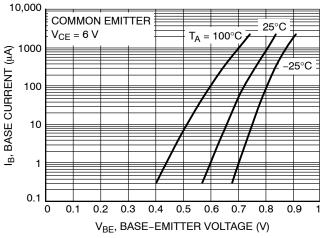


Figure 12. Base-Emitter Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

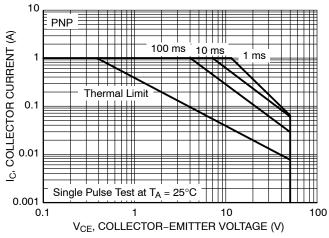


Figure 13. PNP Safe Operating Area

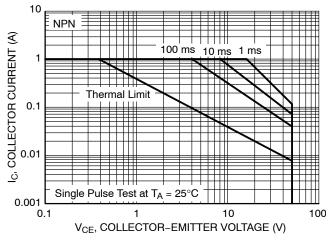
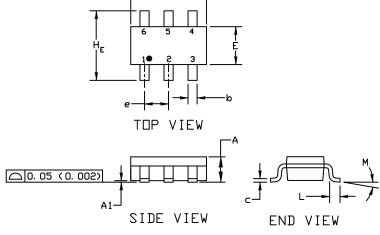


Figure 14. NPN Safe Operating Area


SC-74 CASE 318F ISSUE P

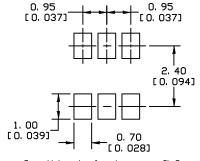
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MI	LLIMETER	25		INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
A	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0.10	0. 001	0. 002	0. 004
ھ	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
U	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
E	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
e	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
١	0. 20	0. 40	0. 60	0, 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*


XXX = Specific Device Code

M = Date Code

not follow the Generic Marking.

= Pb-Free Package
 (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may

For additional information on our Pb-Free strategy and soldering details, please download the UN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. CATHODE	PIN 1. NO CONNECTION	PIN 1. EMITTER 1	PIN 1. COLLECTOR 2	PIN 1. CHANNEL 1	PIN 1. CATHODE
2. ANODE	2. COLLECTOR	2. BASE 1	2. EMITTER 1/EMITTER 2	2. ANODE	ANODE
CATHODE	EMITTER	COLLECTOR 2	COLLECTOR 1	CHANNEL 2	CATHODE
CATHODE	4. NO CONNECTION	4. EMITTER 2	4. EMITTER 3	CHANNEL 3	CATHODE
5. ANODE	COLLECTOR	5. BASE 2	BASE 1/BASE 2/COLLECTOR 3	CATHODE	CATHODE
CATHODE	6. BASE	COLLECTOR 1	6. BASE 3	CHANNEL 4	CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODI 4. ANODE 5. CATHODE	≣
6. DRAIN 1	COLLECTOR 1	COLLECTOR 2	6. CATHODE	COLLECTOR	

DOCUMENT NUMBER:	98ASB42973B	DBASB42973B Electronic versions are uncontrolled except when accessed directly from the Document Reportance Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-74		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales