

PNP Silicon Transistor KSA1156

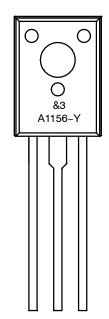
Features

- High Breakdown Voltage
- Low Collector Saturation Voltage
- High Speed Switching
- This is a Pb-Free Device

Applications

- High Voltage Switching
- Low Power Switching Regulator
- DC-DC Converter

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage	-400	V
V _{CEO}	Collector-Emitter Voltage	-400	V
V _{EBO}	Emitter-Base Voltage	-7	V
Ι _Β	Base Current	-0.25	Α
I _C	Collector Current (DC)	-0.5	Α
I _{CP}	Collector Current (Pulse)	-1	Α
P _C	Collector Dissipation, $T_A = 25^{\circ}C$ $T_C = 25^{\circ}C$	1 10	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	−55 ~ 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TO-126-3LD CASE 340AS

MARKING DIAGRAM

&3 = 3-Digit Date Code A1156-Y = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping	
KSA1156YS	TO-126-3LD (Pb-Free)	2000 Units / Bulk Bag	

KSA1156

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted)

Symbol	Characteristic	Test Condition	Min	Max	Unit
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}, L = -20 \text{ mH}$	-400	_	V
V _{CEX} (sus)	Collector-Emitter Sustaining Voltage	$I_C = -200 \text{ mA}, I_{B1} = I_{B2} = -20 \text{ mA},$ $V_{BE}(\text{off}) = 5 \text{ V}, L = 10 \text{ mH}$	-400	-	V
I _{CBO}	Collector Cut-off Current	$V_{CB} = -400 \text{ V}, I_{E} = 0$	-	-100	μΑ
I _{EBO}	Emitter Cut-off Current	$V_{EB} = -5 \text{ V}, I_C = 0$	-	-10	μΑ
I _{CEX1}	Collector Cut-off Current	$V_{CE} = -400 \text{ V}, V_{BE}(\text{off}) = 1.5 \text{ V}$	-	-100	μΑ
I _{CEX2}	Collector Cut-off Current	$V_{CE} = -400 \text{ V}, V_{BE}(\text{off}) = 1.5 \text{ V}, T_{C} = 125^{\circ}\text{C}$	_	-1	mA
h _{FE}	DC Current Gain	$V_{CE} = -5 \text{ V}, I_{C} = -100 \text{ mA}$	30	200	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}$	-	-1	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}$	-	-1.2	V
t _{ON}	Turn On Time	$V_{CC} = -150 \text{ V}, I_C = -100 \text{ mA}, I_{B1} = -10 \text{ mA},$	-	1	μs
t _{STG}	Storage Time	I_{B2} = 20 mA, R _L = 1.5 kΩ	_	4	μS
t _F	Fall Time		_	1	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$h_{\mbox{\scriptsize FE}}$ CLASSIFICATION

Classification	N	R	0	Υ
h _{FE}	30 ~ 60	40 ~ 80	60 ~ 120	100 ~ 200

KSA1156

TYPICAL CHARACTERISTICS

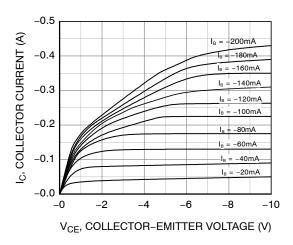


Figure 1. Static Characteristic

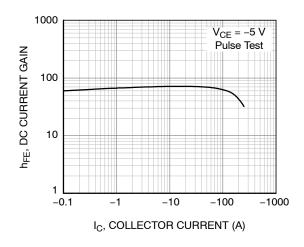


Figure 2. DC Current Gain

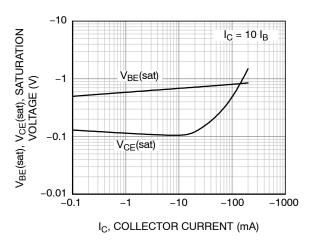


Figure 3. Collector–Emitter Saturation Voltage Base–Emitter Saturation Voltage

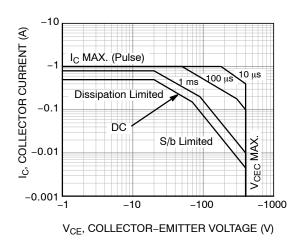


Figure 4. Safe Operating Area

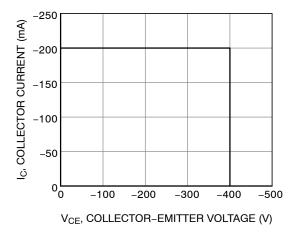


Figure 5. Reverse Bias Safe Operating Area

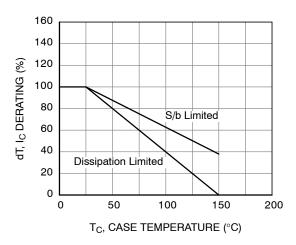


Figure 6. Derating Curve of Safe Operating Areas

KSA1156

TYPICAL CHARACTERISTICS (Continued)

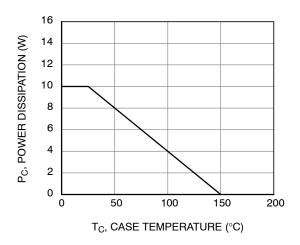
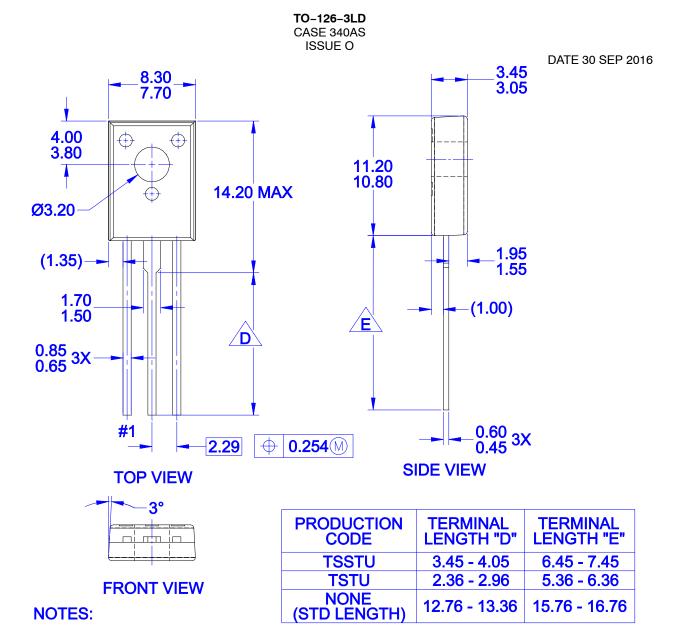



Figure 7. Power Derating

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE
- B. ALL DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR PROTRUSIONS

FOR TERMINAL LENGTH "E", REFER TO TABLE

DOCUMENT NUMBER: 98AON13817G Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO			
DESCRIPTION:	TO-126-3LD		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales