## Switch-mode Power Rectifier 100 V, 40 A #### **Features and Benefits** - Low Forward Voltage - Low Power Loss/High Efficiency - High Surge Capacity - 175°C Operating Junction Temperature - 40 A Total (20 A Per Diode Leg) - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - Power Supply Output Rectification - Power Management - Instrumentation #### **Mechanical Characteristics:** - Case: Epoxy, Molded - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight: 4.3 Grams (Approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds #### **MAXIMUM RATINGS** Please See the Table on the Following Page ### ON Semiconductor® http://onsemi.com # SCHOTTKY BARRIER RECTIFIER 40 AMPERES 100 VOLTS #### **MARKING DIAGRAM** B40H100 = Specific Device Code A = Assembly Location #### ORDERING INFORMATION | Device | Package | Shipping | |--------------|---------------------|---------------| | MBR40H100WTG | TO-247<br>(Pb-Free) | 30 Units/Rail | #### MAXIMUM RATINGS (Per Diode Leg) | Rating | Symbol | Value | Unit | |---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|------| | Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 100 | V | | Average Rectified Forward Current T <sub>C</sub> = 148°C, per Diode per Device | I <sub>F(AV)</sub> | 20<br>40 | А | | Peak Repetitive Forward Current<br>(Square Wave, 20 kHz) T <sub>C</sub> = 144°C | I <sub>FRM</sub> | 40 | А | | Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) | I <sub>FSM</sub> | 200 | Α | | Operating Junction Temperature (Note 1) | T <sub>J</sub> | +175 | °C | | Storage Temperature | T <sub>stg</sub> | -65 to +175 | °C | | Voltage Rate of Change (Rated V <sub>R</sub> ) | dv/dt | 10,000 | V/μs | | Controlled Avalanche Energy (see test conditions in Figures 10 and 11) | W <sub>AVAL</sub> | 400 | mJ | | ESD Ratings: Machine Model = C<br>Human Body Model = 3B | | > 400<br>> 8000 | V | #### THERMAL CHARACTERISTICS | Maximum Thermal Resistance – Junction–to–Case | $R_{ heta JC}$ | 0.58 | °C/W | |----------------------------------------------------------|----------------|------|------| | <ul><li>– Junction–to–Ambient (Socket Mounted)</li></ul> | $R_{ hetaJA}$ | 32 | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### **ELECTRICAL CHARACTERISTICS** | Characterisitc | Symbol | Min | Тур | Max | Unit | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------------------------|------------------------------|------| | Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F = 20 \text{ A}, T_J = 25^{\circ}\text{C}) \\ &(I_F = 20 \text{ A}, T_J = 125^{\circ}\text{C}) \\ &(I_F = 40 \text{ A}, T_J = 25^{\circ}\text{C}) \\ &(I_F = 40 \text{ A}, T_J = 125^{\circ}\text{C}) \end{aligned} $ | VF | -<br>-<br>- | 0.74<br>0.61<br>0.85<br>0.72 | 0.80<br>0.67<br>0.90<br>0.76 | V | | Instantaneous Reverse Current (Note 2) (Rated dc Voltage, T <sub>J</sub> = 125°C) (Rated dc Voltage, T <sub>J</sub> = 25°C) | İR | -<br>- | 2.0<br>0.0012 | 10<br>0.01 | mA | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$ . <sup>2.</sup> Pulse Test: Pulse Width = 300 $\mu$ s, Duty Cycle $\leq$ 2.0%. #### TYPICAL CHARACTERISTICS Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage **Figure 3. Typical Reverse Current** Figure 4. Maximum Reverse Current Figure 6. Current Derating, Ambient, Per Leg #### **TYPICAL CHARACTERISTICS** Figure 7. Forward Power Dissipation Figure 8. Capacitance Figure 9. Thermal Response Junction-to-Case Figure 10. Test Circuit The unclamped inductive switching circuit shown in Figure 10 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened. When $S_1$ is closed at $t_0$ the current in the inductor $I_L$ ramps up linearly; and energy is stored in the coil. At $t_1$ the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at $BV_{DUT}$ and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at $t_2$ . By solving the loop equation at the point in time when $S_1$ is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the $V_{DD}$ power supply while the diode is in breakdown (from $t_1$ to $t_2$ ) minus any losses due to finite component resistances. Assuming the component resistive Figure 11. Current-Voltage Waveforms elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the $V_{DD}$ voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when $S_1$ was closed, Equation (2). #### **EQUATION (1):** $$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^2 \left( \frac{BV_{DUT}}{BV_{DUT} U_{DD}} \right)$$ #### **EQUATION (2):** $$W_{AVAL} \approx \frac{1}{2}LI_{LPK}^2$$ **DATE 17 MAR 2017** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. SLOT REQUIRED, NOTCH MAY BE ROUNDED. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY. - LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY - ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. - DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.70 | 5.30 | | | A1 | 2.20 | 2.60 | | | b | 1.07 | 1.33 | | | b2 | 1.65 | 2.35 | | | b4 | 2.60 | 3.40 | | | С | 0.45 | 0.68 | | | D | 20.80 | 21.34 | | | E | 15.50 | 16.25 | | | E2 | 4.32 | 5.49 | | | е | 5.45 BSC | | | | F | 2.655 | | | | L | 19.80 | 20.80 | | | L1 | 3.81 | 4.32 | | | P | 3.55 | 3.65 | | | Q | 5.40 | 6.20 | | | S | 6.15 BSC | | | #### **GENERIC MARKING DIAGRAM\*** XXXXX = Specific Device Code = Assembly Location Α Υ = Year WW = Work Week = Pb-Free Package \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98AON16119F | Electronic versions are uncontrolled except when accessed directly from the Document Repository<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--| | DESCRIPTION: | TO-247 | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales