MBR7030WTG

Switch-mode Power Rectifier

The switch-mode power rectifier, a state-of-the-art device, employs the use of the Schottky Barrier principle with a Platinum barrier metal.

Features

- Dual Diode Construction; Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating
- 30 V Blocking Voltage
- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability
- 175°C Operating Junction Temperature
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

Mechanical Characteristics

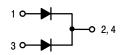
- Case: Epoxy, Molded. Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 4.3 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- ESD Ratings: Machine Model, B (< 400 V)
 - Human Body Model, 3B (> 8000 V)

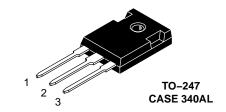
MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (Rated V_R , $T_C = 100^{\circ}C$) Per Leg Per Device	I _{F(AV)}	35 70	A
Peak Repetitive Forward Current, (Rated V _R , Square Wave, 20 kHz, T _C = 100°C)	I _{FRM}	70	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	500	Α
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	Α
Storage Temperature Range	T _{stg}	-55 to +175	°C
Operating Junction Temperature (Note 1)	TJ	-55 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 70 AMPERES, 30 VOLTS

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MBR7030WTG	TO-247 (Pb-Free)	30 Units/Rail

MBR7030WTG

THERMAL CHARACTERISTICS (Per Diode)

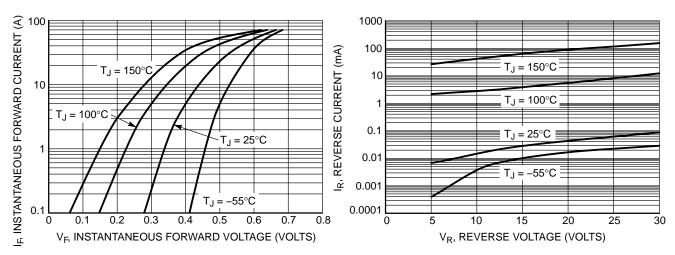
Rating	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.55	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode)	·		
Instantaneous Forward Voltage (Note 2) @ $I_F = 35$ Amps, $T_C = 25^{\circ}C$ @ $I_F = 70$ Amps, $T_C = 25^{\circ}C$ @ $I_F = 35$ Amps, $T_C = 100^{\circ}C$	V _F	0.55 0.72 0.52	V
Instantaneous Reverse Current (Note 2) @ Rated DC Voltage, T _C = 25°C	I _R	5.0	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width = 300 µs, Duty Cycle < 2.0%

@ Rated DC Voltage, T_C = 100°C

TYPICAL CHARACTERISTICS



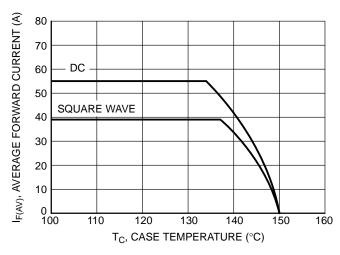

Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

250

MBR7030WTG

TYPICAL CHARACTERISTICS

P_{F(AV)}, AVERAGE POWER DISSIPATION (WATTS) 45 40 35 SQUARE 30 WAVE 25 20 DC 15 10 5 30 40 50 60 $I_{F(AV)}$, AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Current Derating (Case)

Figure 4. Forward Power Dissipation (Per Leg)

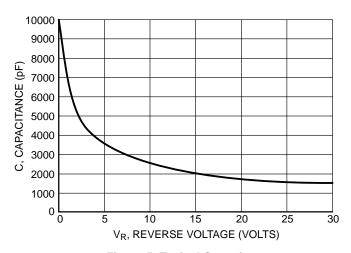
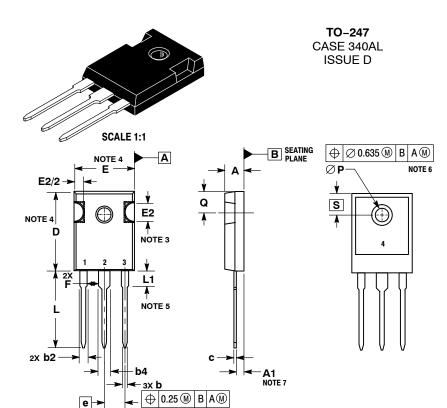
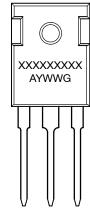



Figure 5. Typical Capacitance

DATE 17 MAR 2017


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 SLOT REQUIRED, NOTCH MAY BE ROUNDED.

- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
- ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
- DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.70	5.30	
A1	2.20	2.60	
b	1.07	1.33	
b2	1.65	2.35	
b4	2.60	3.40	
С	0.45	0.68	
D	20.80	21.34	
E	15.50	16.25	
E2	4.32	5.49	
е	5.45 BSC		
F	2.655		
L	19.80	20.80	
L1	3.81	4.32	
P	3.55	3.65	
Q	5.40	6.20	
S	6.15 BSC		

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location Α

Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON16119F	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales