

Complementary Silicon Power Transistors MJ15001 (NPN), MJ15002 (PNP)

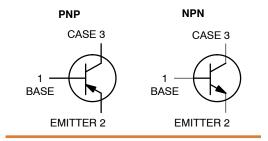
The MJ15001 and MJ15002 are power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area
- For Low Distortion Complementary Designs
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant*

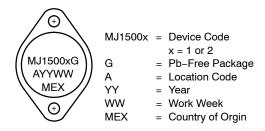
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	140	Vdc
Collector-Base Voltage	V _{CBO}	140	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current - Continuous	I _C	15	Adc
Base Current - Continuous	Ι _Β	5	Adc
Emitter Current - Continuous	ΙE	20	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.875	°C/W
Maximum Lead Temperature for Soldering Purposes 1/16" from Case for ≤ 10 secs	T _L	265	°C


20 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 140 VOLTS, 250 WATTS

SCHEMATIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MJ15001G	TO-204AA (Pb-Free)	100 Units / Tube

DISCONTINUED (Note 1)

MJ15002G	TO-204AA (Pb-Free)	100 Units / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ15001 (NPN), MJ15002 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

TELEGITIONE GIAINAGE TIMOTION (16 - 25 G GINOGO GINOTWISO NOCOG)				1
Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (Note 1) $(I_C, = 200 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	140	_	Vdc
Collector Cutoff Current $(V_{CE} = 140 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 140 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_C = 150^{\circ}\text{C})$	I _{CEX}	_ _	100 2.0	μAdc mAdc
Collector Cutoff Current (V _{CE} = 140 Vdc, I _B = 0)	I _{CEO}	_	250	μAdc
Emitter Cutoff Current $(V_{EB} = 5 \text{ Vdc}, I_C = 0)$	I _{EBO}	_	100	μAdc
SECOND BREAKDOWN	·			
Second Breakdown Collector Current with Base Forward Biased $(V_{CE} = 40 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$ $(V_{CE} = 100 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$	I _{S/b}	5.0 0.5	_ _	Adc
ON CHARACTERISTICS	-	•	•	
DC Current Gain (I _C = 4 Adc, V _{CE} = 2 Vdc)	h _{FE}	25	150	_
Collector–Emitter Saturation Voltage (I _C = 4 Adc, I _B = 0.4 Adc)	V _{CE(sat)}	-	1.0	Vdc
Base–Emitter On Voltage ($I_C = 4$ Adc, $V_{CE} = 2$ Vdc)	V _{BE(on)}	_	2.0	Vdc
DYNAMIC CHARACTERISTICS	•	•	•	•
Current-Gain — Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f _{test} = 0.5 MHz)	f _T	2.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	_	1000	pF

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

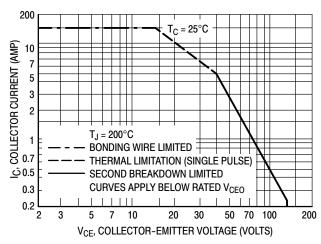


Figure 1. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J (pk)} = 200$ °C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

MJ15001 (NPN), MJ15002 (PNP)

1000 700 $T_J = 25^{\circ}C$ 500 300 C_{ib} C, CAPACITANCE (pF) 200 100 70 50 C_{ob} 30 MJ15001 (NPN) MJ15002 (PNP) 20 10 70 1.5 2 3 50 100 V_R, REVERSE VOLTAGE (VOLTS)

V_R, REVERSE VOLTAGE (VOLTS) **Figure 2. Capacitances**

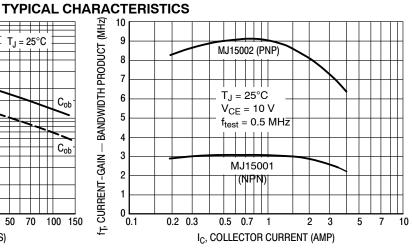
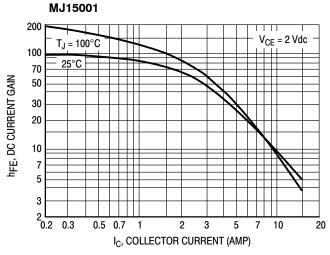



Figure 3. Current-Gain — Bandwidth Product

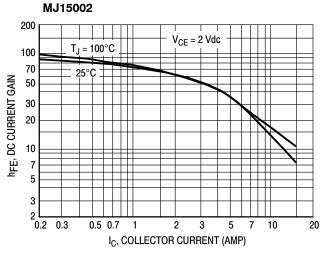
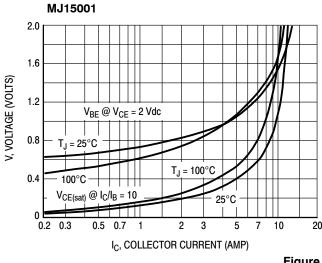



Figure 4. DC Current Gain

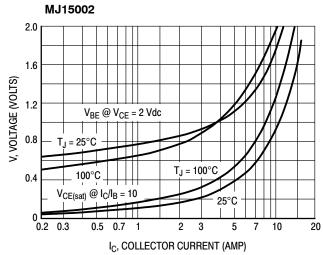
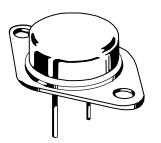
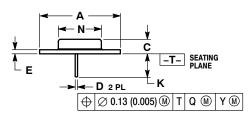
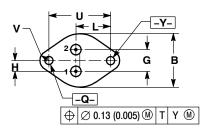



Figure 5. "On" Voltages





TO-204 (TO-3) CASE 1-07 ISSUE Z

DATE 10 MAR 2000

SCALE 1:1

CASE: COLLECTOR

CASE: CATHODE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: INCH.
 3. ALL RULES AND NOTES ASSOCIATED WITH
 REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37 REF	
В		1.050		26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215	BSC	5.46	BSC
K	0.440	0.480	11.18	12.19
L	0.665	BSC	16.89	BSC
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
٧	0.131	0.188	3.33	4.77

STYLE 2: PIN 1. BASE 2. COLLECTOR STYLE 3: PIN 1. GATE 2. SOURCE STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE STYLE 4: PIN 1. GROUND 2. INPUT STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR CASE: EMITTER CASE: DRAIN CASE: OUTPUT STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. CATHODE #1 2. CATHODE #2 PIN 1. GATE 2. EMITTER PIN 1. ANODE 2. OPEN PIN 1. ANODE #1 2. ANODE #2

CASE: CATHODE

CASE: ANODE

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15G11 if are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Onlines states and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales