

Surface Mount Ultrafast Power Rectifier

Plastic SOD-123FL Package

NHP140SF, NRVHP140SF

This SOD-123FL ultrafast rectifier provides fast switching performance with soft recovery in a compact thermally efficient package. Its compact footprint makes it ideally suited to portable and automotive applications where board space is at a premium. Its low profile makes it a good option for flat panel display and other applications with limited vertical clearance. The device offers low leakage over temperature making it a good match for applications requiring low quiescent current.

Features

- Fast Soft Switching for Reduced EMI and Higher Efficiency
- Low Profile Maximum Height of 1.0 mm
- Small Footprint Footprint Area of 5.94 mm²
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

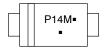
Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 11.7 mg (Approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Maximum for 10 Seconds

1

• MSL 1

Applications


- Automotive HID Lighting
- Diesel Piezo Injection
- Power Factor Correction in Mini Adapters
- Freewheeling Diode Where Space is at a Premium

1.0 AMPERES 400 VOLTS

SOD-123FL CASE 498

MARKING DIAGRAM

P14 = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NHP140SFT3G	SOD-123 (Pb-Free)	10000/Tape & Reel
NRVHP140SFT3G	SOD-123 (Pb-Free)	10000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NHP140SF, NRVHP140SF

MAXIMUM RATINGS

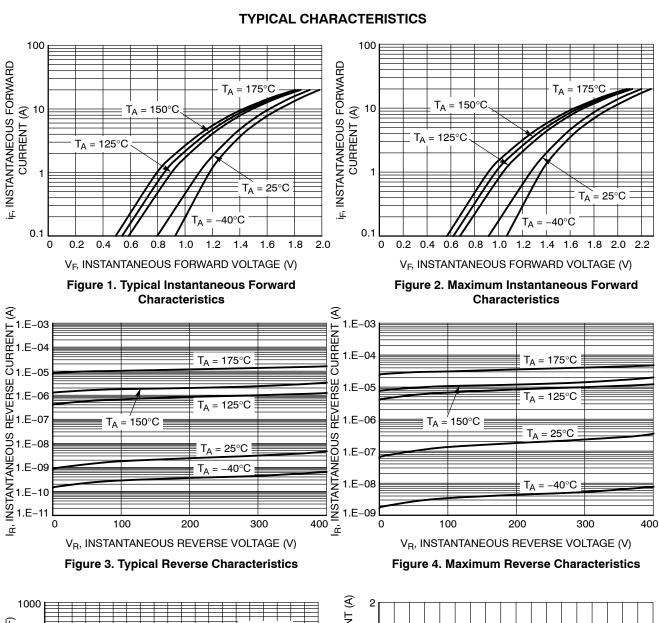
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400	V
Average Rectified Forward Current (T _L = 164°C)	I _O	1.0	Α
Peak Repetitive Forward Current (Square Wave, 20 kHz, T _L = 164°C)	IFRM	2.0	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	25	Α
Storage and Operating Junction Temperature Range (Note 1)	T _{stg} , T _J	-65 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Lead (Note 2)	$\Psi_{\sf JCL}$	12	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	86.7	°C/W
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ heta JA}$	330	°C/W

ELECTRICAL CHARACTERISTICS


Characteristic	Test Conditions	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Note 4)	$(I_F = 1 \text{ A, } T_C = 125^{\circ}\text{C})$ $(I_F = 1 \text{ A, } T_C = 25^{\circ}\text{C})$ $(I_F = 2 \text{ A, } T_C = 125^{\circ}\text{C})$ $(I_F = 2 \text{ A, } T_C = 25^{\circ}\text{C})$	V _F	0.9 1.1 1.01 1.2	1.10 1.25 1.20 1.40	V
Instantaneous Reverse Current (Note 4)	(Rated DC Voltage, T _C = 125°C) (Rated DC Voltage, T _C = 25°C)	I _R	5 0.015	25 0.5	μΑ
Reverse Recovery Time Peak Reverse Recovery Current Total Reverse Recovery Charge Softness Factor	$(I_F = 1 \text{ A}, d_{IF}/d_t = -50 \text{ A}/\mu\text{s}, T_C = 25^{\circ}\text{C})$	t _{rr} I _{RM} Q _{rr} S	23 0.68 6.45 1.4	40 5 20 3	ns A nC -
Reverse Recovery Time Peak Reverse Recovery Current Total Reverse Recovery Charge Softness Factor	$(I_F = 1 \text{ A, } d_{IF}/d_t = -50 \text{ A/}\mu\text{s, } T_C = 125^{\circ}\text{C})$	t _{rr} I _{RM} Q _{rr} S	42 0.86 20 1.9	80 5 40 5	ns A nC -

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 2. Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board.
- 3. Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board.
- 4. Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2.0%.

^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

NHP140SF, NRVHP140SF

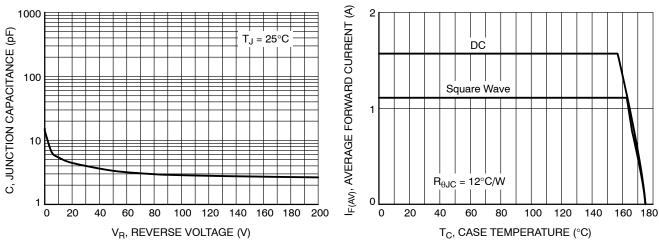


Figure 5. Typical Junction Capacitance

Figure 6. Current Derating

NHP140SF, NRVHP140SF

TYPICAL CHARACTERISTICS

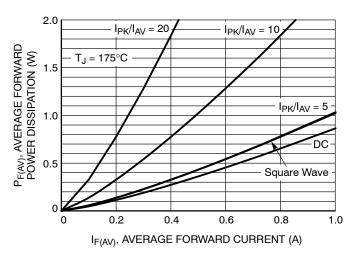


Figure 7. Forward Power Dissipation

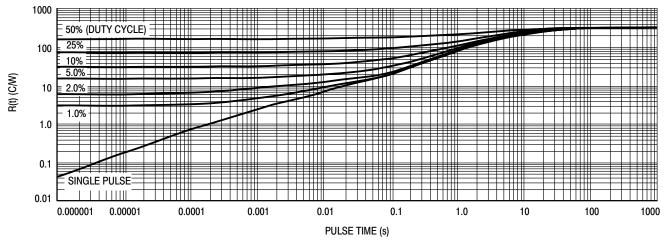
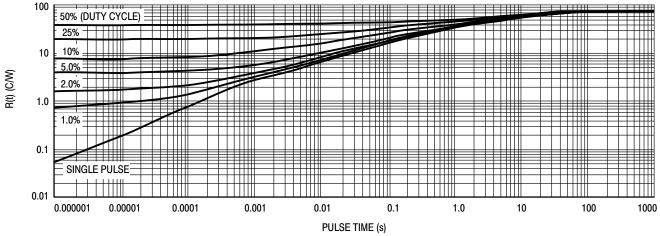
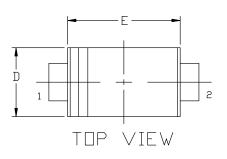
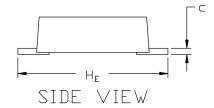
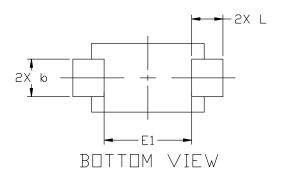


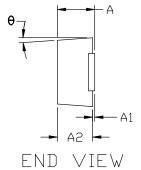
Figure 8. Thermal Response, Junction-to-Ambient (20 mm² pad)

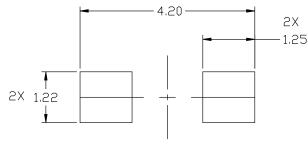



Figure 9. Thermal Response, Junction-to-Ambient (1 in² pad)



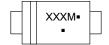



SOD-123-2 1.65x2.70x0.90 CASE 498 ISSUE E



	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.90	0.95	0.98	
A1	0.00	0.05	0.10	
A2	0.85	0.90	0.95	
b	0.70	0.90	1.10	
U	0.10	0.15	0.20	
D	1.50	1.65	1.80	
E	2.50	2.70	2.90	
E1	1.70	2.10	2.50	
HE	3.40	3.60	3.80	
L	0.55	0.75	0.95	
θ	0°		8°	

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS 6 AND L ARE TO BE MEASURED ON A FLAT SECTION OF THE LEAD BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH PROTRUSIONS, OR GATE BURRS.
- 5. FLAT LEAD.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the IDN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11184D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOD-123-2 1.65x2.70x0.90)	PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales