Low Forward Voltage, Low Leakage Trench-based Schottky Rectifier ### NRVTSA3100E #### **Features** - Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage - Fast Switching with Exceptional Temperature Stability - Low Power Loss and Lower Operating Temperature - Higher Efficiency for Achieving Regulatory Compliance - High Surge Capability - NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These are Pb-Free and Halide-Free Devices #### **Typical Applications** - Switching Power Supplies including Wireless, Smartphone and Notebook Adapters - High Frequency and DC-DC Converters - Freewheeling and OR-ing diodes - Reverse Battery Protection - Instrumentation - LED Lighting ### **Mechanical Characteristics:** - Case: Epoxy, Molded - Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in. - Lead Finish: 100% Matte Sn (Tin) - Lead and Mounting SurfaceTemperature for Soldering Purposes: 260°C Max. for 10 Seconds - Device Meets MSL 1 Requirements ## SCHOTTKY BARRIER **RECTIFIERS** 3 AMPERES 100 VOLTS **SMA** CASE 403D STYLE 1 #### MARKING DIAGRAM Assembly Location = work Week = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | 4 | Device | Package | Shipping† | | |---|---------------------|-----------|-------------|--| | | NRVTSA3100ET3G | SMA | 5000 / | | | | NRVTSA3100ET3G-GA01 | (Pb-Free) | Tape & Reel | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. #### NRVTSA3100E #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|-------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 100 | V | | Average Rectified Forward Current (T _L = 134°C) | I _{F(AV)} | 3.0 | А | | Peak Repetitive Forward Current,
(Square Wave, 20 kHz, T _L = 127°C) | I _{FRM} | 6.0 | А | | Non-Repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) | I _{FSM} | 50 | А | | Storage Temperature Range | T _{stg} | -65 to +175 | °C | | Operating Junction Temperature | TJ | -55 to +175 | °C | | ESD Rating (Human Body Model) | | 1A | | | ESD Rating (Charged Device Model) | | >1000 | 7 V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Тур | Max | Unit | |--|--|-----|----------|------| | Maximum Thermal Resistance, Steady State (Note 1) Junction-to-Lead Junction-to-Ambient | В _е ль
В _е ла | emi | 22
80 | °C/W | #### **ELECTRICAL CHARACTERISTICS** | | | 6 1/1 | | | |--|----------------|-------|-------|------| | Instantaneous Forward Voltage (Note 2) | VF | 1/4 | | V | | $(i_F = 1.0 \text{ Amps}, T_J = 25^{\circ}\text{C})$ | | 0.61 | _ | | | (i _F = 3.0 Amps, T _J = 25°C) | N | 0.88 | 0.995 | | | (i _F = 1.0 Amps, T _J = 125°C) | , , | 0.53 | _ | | | $(i_F = 3.0 \text{ Amps}, T_J = 125 ^{\circ}\text{C})$ | | 0.66 | 0.70 | | | (if = 3.0 Allips, 1) = 123 0) | | 0.00 | 0.70 | | | Reverse Current (Note 2) | i _R | | | | | (Rated dc Voltage, T _J = 25°C) | | 0.90 | 5.0 | μA | | (Rated dc Voltage, T _J = 125°C) | | 0.62 | 2.0 | mΑ | | (Hallot 115 (Hallo | | 0.02 | | 110. | | Diode Capacitance | C _d | | | pF | | (Rated dc Voltage, T _J = 25°C, f = 1 MHz) | _ | 14.3 | | - | | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Assumes 600 mm² 1 oz. copper bond pad, on a FR4 board. 2. Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%. #### NRVTSA3100E #### TYPICAL CHARACTERISTICS #### NRVTSA3100E #### **TYPICAL CHARACTERISTICS** Figure 7. Forward Power Dissipation STYLE 1 STYLE 2 SCALE 1:1 SMA CASE 403D ISSUE J **DATE 22 OCT 2021** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCHES - 3. DIMENSION & SHALL BE MEASURED WITHIN DIMENSION L. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN. | N□M. | MAX. | MIN. | N□M. | MAX. | | Α | 1.97 | 2.10 | 2.20 | 0.078 | 0.083 | 0.087 | | A1 | 0.05 | 0.10 | 0.20 | 0.002 | 0.004 | 0.008 | | b | 1.27 | 1.45 | 1.63 | 0.050 | 0.057 | 0.064 | | С | 0.15 | 0.28 | 0.41 | 0.006 | 0.011 | 0.016 | | D | 2.29 | 2.60 | 2.92 | 0.090 | 0.103 | 0.115 | | Ε | 4.06 | 4.32 | 4.57 | 0.160 | 0.170 | 0.180 | | HE | 4.83 | 5.21 | 5.59 | 0.190 | 0.205 | 0.220 | | L | 0.76 | 1.14 | 1.52 | 0.030 | 0.045 | 0.060 | STYLE 1: STYLE 2: PIN 1. CATHODE (POLARITY BAND) NO POLARITY 2. ANODE # GENERIC MARKING DIAGRAM* STYLE 1 STYLE 2 XXXX = Specific Device Code A = Assembly Location / = Year WW = Work Week ■ Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. RECOMMENDED MOUNTING FOOTPRINT | DOCUMENT NUMBER: | 98AON04079D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | SMA | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales