<u>Si/SiC Hybrid Module</u> –

EliteSiC[™], 3 Channel Flying Capacitor Boost 1000 V, 200 A IGBT, 1200 V, 60 A SiC Diode, Q2 Package

NXH600B100H4Q2F2S1G, SNXH600B100H4Q2F2S1G-S

The NXH600B100H4Q2S1G is a Si/SiC Hybrid three channel flying capacitor boost module. Each channel contains two 1000 V, 200 A IGBTs, and two 1200 V, 60 A SiC diodes. The module contains an NTC thermistor.

Features

- 3-channel Boost in Q2 Package
- Extremely Efficient Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout

Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies Systems

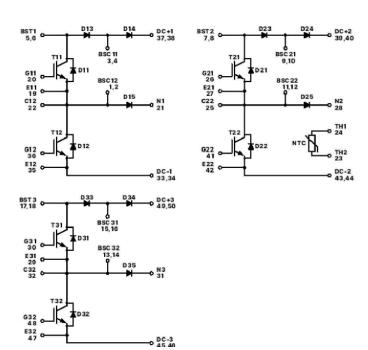
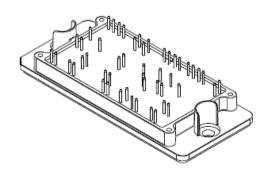
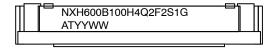




Figure 1. NXH600B100H4Q2F2S1G Schematic Diagram

PIM56, 93x47 (SOLDER PIN) CASE 180BK

MARKING DIAGRAM

NXH600B100H4Q2F2S1G = Specific Device Code

= Pb-Free Package

AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
GBT (T11, T12, T21, T22, T31, T32)			
Collector-Emitter Voltage	V _{CES}	1000	V
Gate-Emitter Voltage	V _{GE}	±20	V
Positive Transient Gate–Emitter Voltage (t_{pulse} = 5 μ s, D < 0.10)		30	
Continuous Collector Current @ T _C = 80°C	Ic	173	Α
Pulsed Peak Collector Current @ $T_C = 80^{\circ}C$ ($T_J = 175^{\circ}C$)	I _{C(Pulse)}	519	Α
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	422	W
Minimum Junction Temperature	T _{JMIN}	-40	°C
Maximum Junction Temperature (Note 2)	T _{JMAX}	175	°C
GBT INVERSE DIODE (D11, D12, D21, D22, D31, D32)			
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	I _F	66	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	98	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	101	W
Minimum Junction Temperature	T _{JMIN}	-40	°C
Maximum Junction Temperature	T _{JMAX}	175	°C
SILICON CARBIDE SCHOTTKY DIODE (D13, D14, D23, D24, D33, D34	1)		•
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	I _F	63	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	189	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	204	W
Minimum Junction Temperature	T _{JMIN}	-40	°C
Maximum Junction Temperature	T _{JMAX}	175	°C
START-UP DIODE (D15, D25, D35)			
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	IF	35	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	105	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	84	W
Minimum Junction Temperature	T _{JMIN}	-40	°C
Maximum Junction Temperature	T _{JMAX}	175	°C
THERMAL AND INSULATION PROPERTIES			
THERMAL PROPERTIES			
Operating Temperature under Switching Condition	T _{VJOP}	-40 to 150	°C
Storage Temperature range	T _{stg}	-40 to 125	°C
NSULATION PROPERTIES	5.9		1
Isolation test voltage, t = 1 sec, 50 Hz	V _{is}	4000	V _{RM}
Creepage distance		12.7	mm
Comparative tracking index	СТІ	>600	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

^{2.} Qualification at 175°C per discrete TO247.

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T11, T12, T21, T22, T31, T32) CHA	ARACTERISTICS					
Collector-Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 2 \text{ mA}$	$V_{(BR)CES}$	1000	1150	-	V
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	-	-	20	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 200 A, T _J = 25°C	V _{CE(sat)}	-	1.88	2.3	V
	V _{GE} = 15 V, I _C = 200 A, T _J = 150°C	1 1	_	2.4	_	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 200 \text{ mA}$	V _{GE(TH)}	4	4.98	6	V
Gate Leakage Current	V _{GE} = ±20 V, V _{CE} = 0 V	I _{GES}	-	-	350	nA
Internal Gate Resistor		r _G	-	3	-	Ω
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	119.75	-	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 50 \text{ A}$	t _r	_	30.08	_	1
Turn-off Delay Time	V_{GE} = -9 V, 15 V, R_{Gon} = 9 Ω , R_{Goff} = 25 Ω	t _{d(off)}	=	614.57	-	1
Fall Time	1	t _f	_	26.85	_	1
Turn-on Switching Loss per Pulse	1	E _{on}	=	860	=	μJ
Turn off Switching Loss per Pulse	1	E _{off}	=	1500	=	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	119.97	-	ns
Rise Time	$V_{CE} = 600 \text{ V}, I_{C} = 50 \text{ A}$	t _r	-	32.09	-	
Turn-off Delay Time	V_{GE} = -9 V, 15 V, R_{Gon} = 9 Ω , R_{Goff} = 25 Ω	t _{d(off)}	-	706.72	-	
Fall Time	1	t _f	-	40.22	-	
Turn-on Switching Loss per Pulse	1	E _{on}	-	1120	=	μJ
Turn off Switching Loss per Pulse	1	E _{off}	=	2750	=	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	-	12687.7	-	pF
Output Capacitance	1	C _{oes}	=	418.0	=	1
Reverse Transfer Capacitance	1	C _{res}	=	73.9	-	1
Total Gate Charge	V_{CE} = 600 V, I_{C} = 40 A, V_{GE} = -15 V ~ 15 V	Q_g	_	680	_	nC
Thermal Resistance - chip-to-heatsink	Thermal grease,	R_{thJH}	_	0.420	_	K/W
Thermal Resistance - chip-to-case	Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.87$ W/mK	R _{thJC}	_	0.225	_	K/W
IGBT INVERSE DIODE (D11, D12, D21,	D22, D31, D32) CHARACTERISTICS	•				-
Diode Forward Voltage	I _F = 50 A, T _J = 25°C	V_{F}	-	1.15	1.5	V
	I _F = 50 A, T _J = 175°C	1 1	_	1.08	_	1
Thermal Resistance - chip-to-heatsink	Thermal grease,	R_{thJH}	_	0.956	_	K/W
Thermal Resistance - chip-to-case	Thickness = 2.1 Mil $\pm 2\%$, λ = 2.87 W/mK	R _{thJC}	_	0.800	_	K/W
DIODES (D13, D14, D23, D24, D33, D34)	CHARACTERISTICS					
Diode Forward Voltage	I _F = 60 A, T _J = 25°C	V_{F}	-	1.51	2.2	V
	I _F = 60 A, T _J = 175°C	1 1	-	2.14	-	1
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	28.14	-	ns
Reverse Recovery Charge	V _{CE} = 600 V, I _C = 50 A	Q _{rr}	-	304.98	-	nC
Peak Reverse Recovery Current	V_{GE} = -9 V, 15 V, R_{Gon} = 9 Ω	I _{RRM}	-	18.8	-	Α
Peak Rate of Fall of Recovery Current	1	di/dt	_	1389.12	-	A/μs
Reverse Recovery Energy	1	E _{rr}	_	105.08	_	μJ

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODES (D13, D14, D23, D24, D33, D34)	CHARACTERISTICS					
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	45.73	-	ns
Reverse Recovery Charge	$V_{CE} = 600 \text{ V}, I_{C} = 50 \text{ A}$ $V_{GE} = -9 \text{ V}, 15 \text{ V}, R_{Gon} = 9 \Omega$	Q _{rr}	_	583.95	-	nC
Peak Reverse Recovery Current	VGE = −9 V, 13 V, n _{Gon} = 9 \(\frac{1}{2}\)	I _{RRM}	-	24.08	-	Α
Peak Rate of Fall of Recovery Current		di/dt	_	1236	_	A/μs
Reverse Recovery Energy		E _{rr}	_	216.04	_	μͿ
Thermal Resistance - chip-to-heatsink	Thermal grease,	R _{thJH}	=	0.599	=	K/W
Thermal Resistance - chip-to-case	Thickness = 2.1 Mil \pm 2%, λ = 2.87 W/mK	R _{thJC}	=	0.466	=	K/W
START-UP DIODE (D15, D25, D35) CHA	RACTERISTICS					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	_	2.25	3.2	V
	I _F = 30 A, T _J = 175°C		_	1.8	-	
Thermal Resistance - chip-to-heatsink	Thermal grease,	R_{thJH}	-	1.309	-	K/W
Thermal Resistance - chip-to-case	Thickness = 2.1 Mil \pm 2%, λ = 2.87 W/mK	R _{thJC}	_	1.133	_	K/W
THERMISTOR CHARACTERISTICS						
Nominal resistance	T = 25°C	R ₂₅	-	5	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	_	490.6	-	Ω
Deviation of R25		ΔR/R	-1	-	1	%
Power dissipation		P_{D}	_	5	_	mW
Power dissipation constant			_	1.3	_	mW/K
B-value	B(25/85), tolerance ±1%		=	3435	_	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH600B100H4Q2F2S1G	NXH600B100H4Q2F2S1G	Q2BOOST, Case 180BK (Pb-Free and Halide-Free Solder Pins)	12 Units / Blister Tray
SNXH600B100H4Q2F2S1G-S	SNXH600B100H4Q2F2S1G-S	Q2BOOST, Case 180BK (Pb-Free and Halide-Free Solder Pins)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34

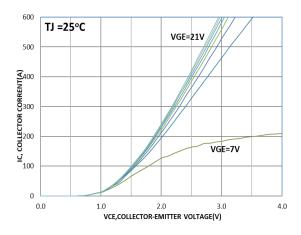


Figure 2. Typical Output Characteristics

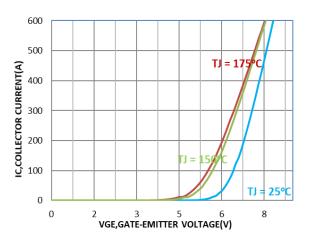


Figure 4. Transfer Characteristics

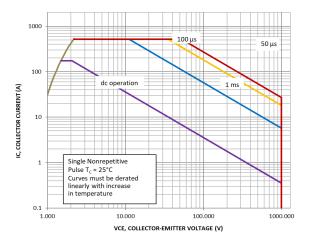


Figure 6. FBSOA

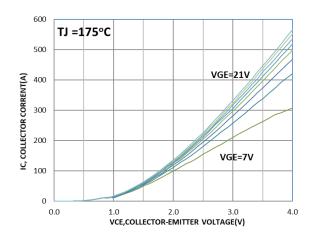


Figure 3. Typical Output Characteristics

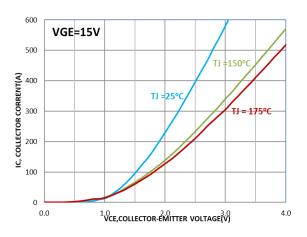


Figure 5. Saturation Voltage Characteristic

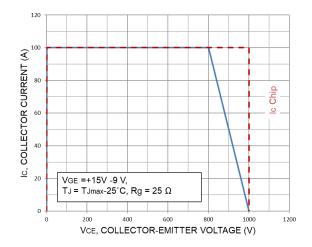


Figure 7. RBSOA

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34 (CONTINUED)

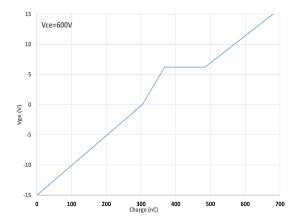


Figure 8. Gate Voltage vs. Gate Charge

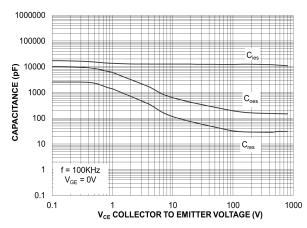


Figure 9. Capacitance

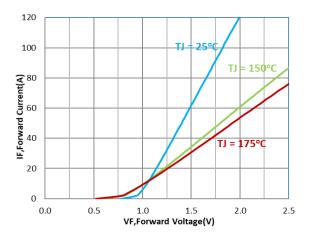


Figure 10. Diode Forward Characteristics

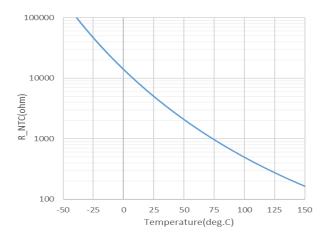


Figure 11. Temperature vs. NTC Value

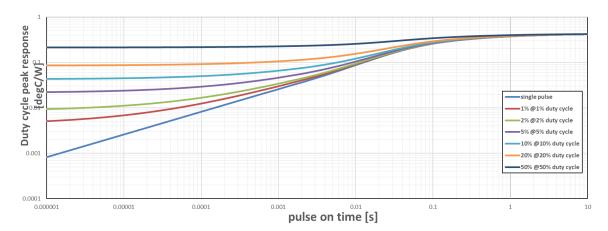


Figure 12. Transient Thermal Impedance (IGBT Rthjc)

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34 (CONTINUED)

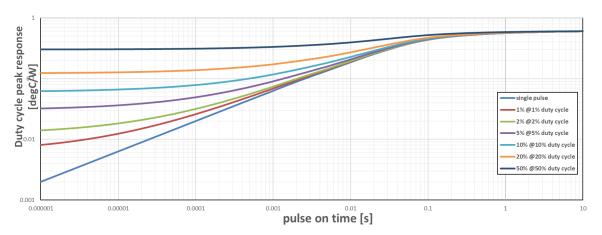


Figure 13. Transient Thermal Impedance (DIODE Rthjc)

TYPICAL CHARACTERISTICS - D11, D12, D21, D22, D31, D32 DIODE

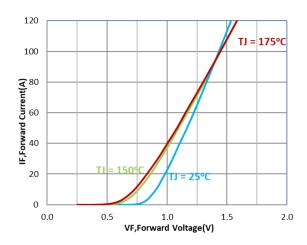


Figure 14. Diode Forward Characteristics

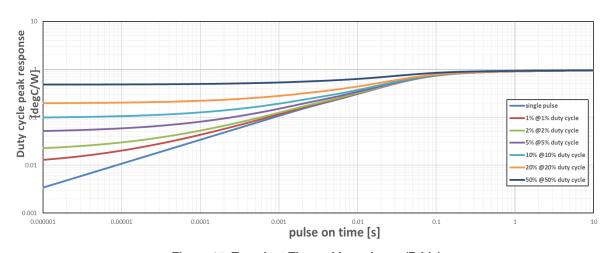


Figure 15. Transient Thermal Impedance (Rthjc)

TYPICAL CHARACTERISTICS - D15, D25, D35 DIODE

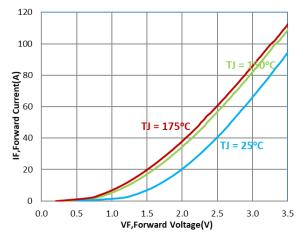


Figure 16. Diode Forward Characteristics

Figure 17. Transient Thermal Impedance (Rthjc)

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34

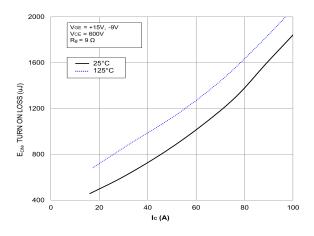


Figure 18. Typical Turn On Loss vs. I_C

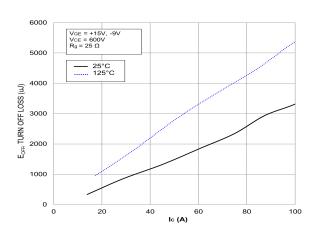


Figure 19. Typical Turn Off Loss vs. I_C

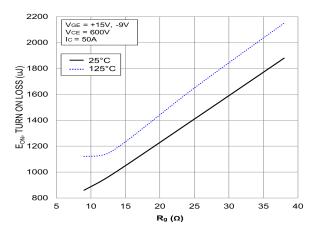


Figure 20. Typical Turn On Loss vs. R_a

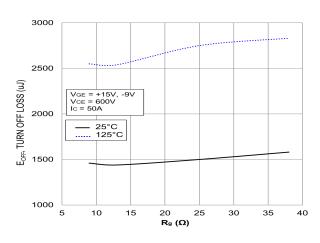


Figure 21. Typical Turn Off Loss vs. Ra

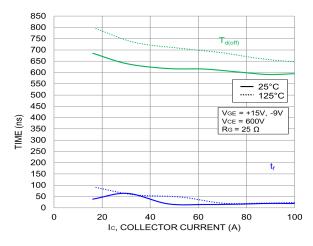


Figure 22. Typical Turn-Off Switching Time vs. I_C

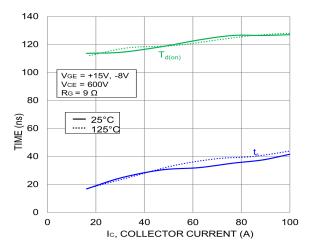


Figure 23. Typical Turn-On Switching Time vs. I_C

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34 (continued)

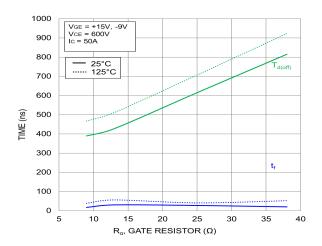


Figure 24. Typical Turn-Off Switching Time vs. R_g

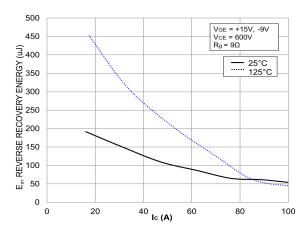


Figure 26. Typical Reverse Recovery Energy Loss vs. I_C

Figure 28. Typical Reverse Recovery Time vs. I_C

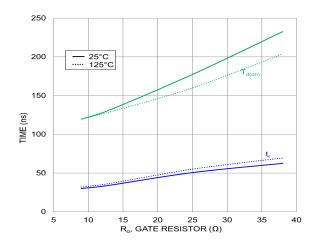


Figure 25. Typical Turn–On Switching Time vs. $R_{\rm g}$

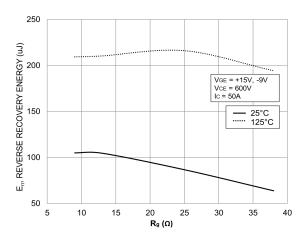


Figure 27. Typical Reverse Recovery Energy Loss vs. $R_{\rm q}$

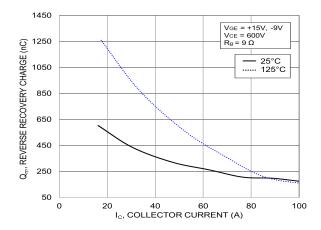


Figure 29. Typical Reverse Recovery Charge vs. $I_{\rm C}$

TYPICAL CHARACTERISTICS - T11||D13, T12||D14, T21||D23, T22||D24, T31||D33, T32||D34 (continued)

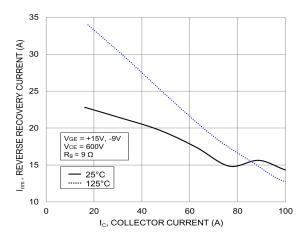


Figure 30. Typical Reverse Recovery Current vs. I_C

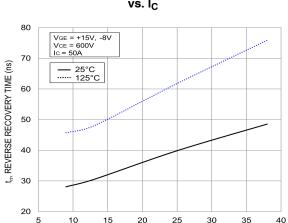


Figure 32. Typical Reverse Recovery Time vs. R_{α}

 R_g , GATE RESISTOR (Ω)

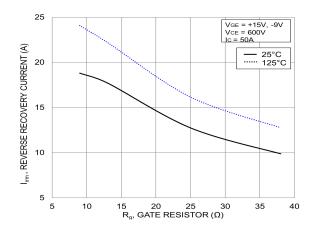


Figure 34. Typical Reverse Recovery Peak Current vs. R_{α}

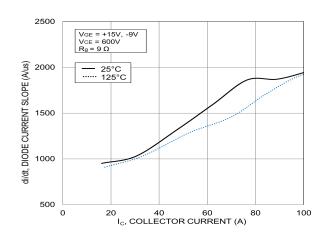


Figure 31. Typical di/dt vs. $I_{\rm C}$

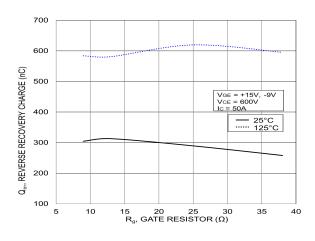
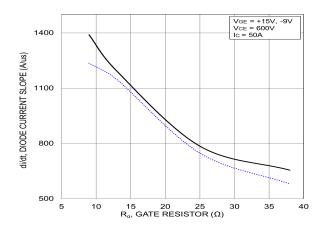
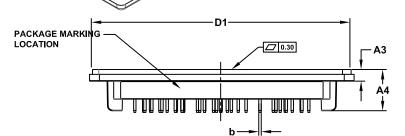
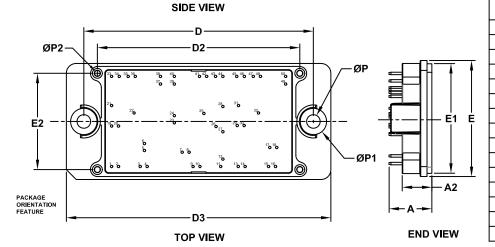


Figure 33. Typical Reverse Recovery Charge vs. R_{α}




Figure 35. Typical di/dt vs. R_g

EliteSiC is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



DATE 19 MAY 2022

NOTES:

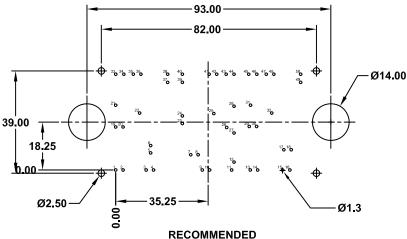
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS 6 AND 61 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A1
- 4. PIN POSITION TOLERANCE IS ± 0.4mm
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES

	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
Α	16.80	17.20	17.60		
A2	11.70	12.00	12.30		
А3	4.40	4.70	5.00		
A4	16.40	16.70	17.00		
b	0.95	1.00	1.05		
D	92.90	93.00	93.10		
D1	104.45	104.75	105.05		
D2	81.80	82.00	82.20		
D3	106.90	107.20	107.50		
E	46.70	47.00	47.30		
E1	44.10	44.40	44.70		
E2	38.80	39.00	39.20		
Р	5.40	5.50	5.60		
P1	10.60	10.70	10.80		
P2	1.80	2.00	2.20		
FZ	1.00	2.00	2.20		

NOTE	4

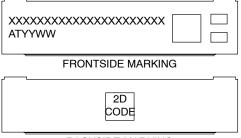
Pin#	l X	Υ	Function	Pin#	1 X	Υ	Function
1	0	0	BSC12	26	42.3	16.2	G21
2	2.8	0	BSC12	27	45.1	14.1	E21
3	11.6	0	BSC11	28	45.1	24.3	N2
4	14.4	0	BSC11	29	50.9	16.6	E31
5	13.3	6.5	BST1	30	53.7	16.6	G31
6	13.3	9.3	BST1	31	51.4	24.7	N3
7	28.6	5.8	BST2	32	59.5	21.7	C32
8	31.4	5.8	BST2	33	0	36.5	DC-1
9	33	0	BSC21	34	3.1	36.5	DC-1
10	35.8	0	BSC21	35	6.7	36.5	E12
11	44.2	0	BSC22	36	9.6	36.5	G12
12	45.1	3	BSC22	37	19.8	33.4	DC+1
13	51.3	0	BSC32	38	19.8	36.5	DC+1
14	54.1	0	BSC32	39	25.4	33.4	DC+2
15	63.6	0	BSC31	40	25.4	36.5	DC+2
16	66.4	0	BSC31	41	35.6	36.5	G22
17	64.1	7.7	BST3	42	38.5	36.5	E22
18	66.9	7.7	BST3	43	42.1	36.5	DC-2
19	0	16.4	E11	44	45.1	36.5	DC-2
20	2.8	16.4	G11	45	50.7	36.5	DC-3
21	0	24.7	N1	46	53.8	36.5	DC-3
22	9.1	21.7	C12	47	57.4	36.5	E32
23	25.4	17.7	TH2	48	60.3	36.5	G32
24	25.4	20.6	TH1	49	70.5	33.4	DC+3
25	37.4	21.5	C22	50	70.5	36.5	DC+3

DOCUMENT NUMBER:	98AON45176H	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PIM56, 93x47 (SOLDER PI	PIM56, 93x47 (SOLDER PIN)	


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PIM56, 93x47 (SOLDER PIN)

CASE 180BK ISSUE O


DATE 19 MAY 2022

RECOMMENDED MOUNTING PATTERN

* For additional Information on our Pb—Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

BACKSIDE MARKING

XXXXX = Specific Device Code
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON45176H	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PIM56, 93x47 (SOLDER PII	PIM56, 93x47 (SOLDER PIN)		

onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales