

Vishay Semiconductors

Three Phase Bridge, 300 A (Power Modules)

PRIMARY CHARACTERISTICS					
I _O 300 A at 100 °C					
V_{RRM}	1600 V to 1800 V				
Package	MTC				
Circuit configuration	Three phase bridge				

FEATURES

- Blocking voltage up to 1800 V
- · High surge capability

- High thermal conductivity package, electrically insulated case
- Excellent power volume ratio
- 3600 V_{RMS} isolating voltage
- UL approved file E78996
- Designed for industrial level
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

DESCRIPTION

A range of extremely compact, encapsulated three phase bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
. (1)		258	А			
I _O ⁽¹⁾	T _C	110	°C			
1	50 Hz	2400	A			
I _{FSM}	60 Hz	2512				
l ² t	50 Hz	28 795	A ² s			
	60 Hz	26 285	T A-S			
I ² √t		287 955	A ² √s			
V _{RRM}	Range	1600 to 1800	V			
T _{Stg}	Range	-40 to +125	°C			
T _J	Range	-40 to +150	°C			

Note

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM} MAXIMUM AT T $_{ m J}$ = MAXIMUM mA					
VS-300MTC		1600	1700	12					
V3-300IVITC	180	1800	1900	12					

⁽¹⁾ Maximum output current must be limited to 250 A to do not exceed the maximum temperature of terminals

www.vishay.com

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL		TEST CONDITIO	VALUES	UNITS	
Maximum DC output current	I _O	120° rect. con	duction angle	300	Α	
at case temperature		120 1001. 0011	duction angle	100	°C	
		t = 10 ms	No voltage		2400	
Maximum peak, one-cycle forward,	I _{ESM}	t = 8.3 ms	reapplied		2512	_
non-repetitive surge current	IFSM	t = 10 ms	100 % V _{RRM}	ļ	2018	A
		t = 8.3 ms	reapplied	Initial	2113	
		t = 10 ms	No voltage	$T_J = T_J$ maximum	28 795	- A ² s
Maximum 12t fax fixaina	l ² t	t = 8.3 ms	reapplied		26 285	
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		20 360	
		t = 8.3 ms	reapplied		18 590	
Maximum I²√t for fusing	I ² √t	t = 0.1 ms to 1	0 ms, no voltage	287 955	A²√s	
Low level value of threshold voltage	V _{FT(TO)1}	(16.7 % x π x T _J maximum	$I_{F(AV)} < I < \pi \times I_{F(AV)}$	0.79	V	
High level value of threshold voltage	V _{FT(TO)2}	$(I > \pi \times I_{F(AV)}),$	T _J maximum	0.96		
Low level value of forward slope resistance	r _{f1}	16.7 % x π x I T _J maximum	$F(AV) < I < \pi \times I_{F(AV)}$	3.36	mΩ	
High level of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}),$	T _J maximum	3.22		
Maximum forward voltage drop	V _{FM}	I_{pk} = 240 A, T_J = 25 °C, per junction			1.54	
iviaximum forward voltage drop		$I_{pk} = 300 \text{ A, T}_{J}$	= 25 °C, per junc	1.7	V	
RMS isolation voltage	V _{ISOL}	$T_J = 25$ °C, all terminal shorted f = 50 Hz, t = 1 s				

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER SYMB		TEST CONDITIONS	VALUES	UNITS		
Maximum junction operating T _J			-40 to +150	°C		
Maximum storage temperature T _{Stg}			-40 to +125			
Maximum thermal resistance,	_	DC operation per module	0.038			
junction to case	R_{thJC}	DC operation per junction	0.23	°C/W		
Typical thermal resistance, case to heat sink	R _{thCS}	Per module Mounting surface smooth, flat, and greased	0.03			
Mounting to heat sink		A mounting compound is recommended and the torque should be	5	Nm		
torque ± 15 % to terminal		rechecked after a period of 3 hours to allow for the spread of the	5	INITI		
Approximate weight		compound. Lubricated threads.	235	g		

Δ R CONDUCTION PER JUNCTION											
DEVICES	S	SINE HALF WAVE CONDUCTION			RECTANGULAR WAVE CONDUCTION				UNITS		
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VS-300MTC Series	0.044	0.050	0.061	0.087	0.143	0.029	0.050	0.066	0.091	0.145	°C/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

www.vishay.com

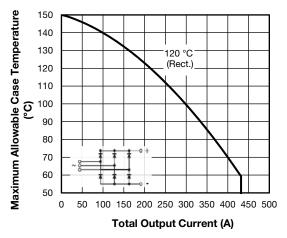


Fig. 1 - Current Rating Characteristics

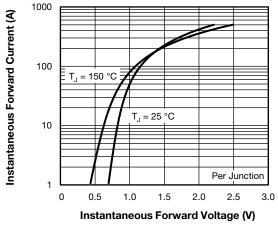
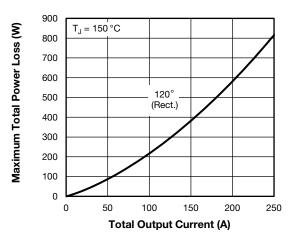



Fig. 2 - Forward Voltage Drop Characteristics

800 R_{thSA} = 0.1 °C/W Maximum Total Power Loss (W) 700 600 0.15 °C/M 500 400 0.25 °C/V 0.3 °C/W 300 0.4 °C/W 0.5 °C/W 200 100 75 25 50 100 125 150 Maximum Allowable Ambient Temperature (°C)

Fig. 3 - Total Power Loss Characteristics

900

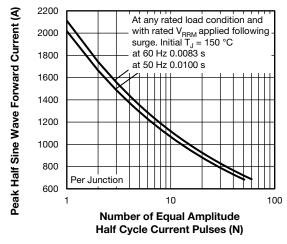


Fig. 4 - Maximum Non-Repetitive Surge Current

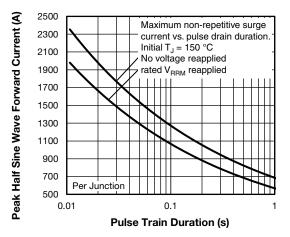


Fig. 5 - Maximum Non-Repetitive Surge Current

Vishay Semiconductors

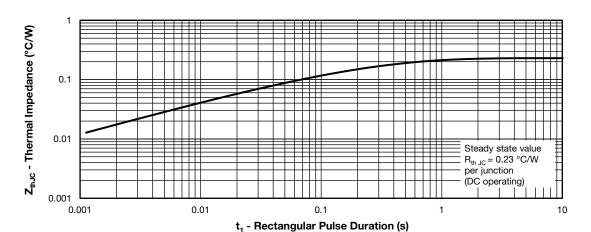


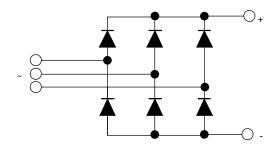
Fig. 6 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

www.vishay.com

Device code VS- 30 0 MT 160 C

1 - Vishay Semiconductors product

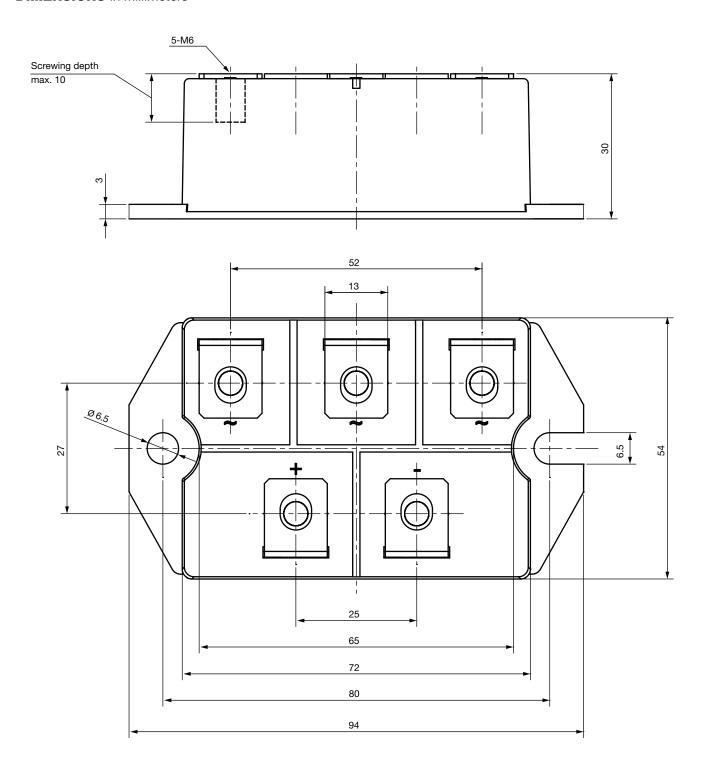

2 - Current rating code: 30 = 300 A (average)

Circuit configuration (three phase diodes bridge)

4 - Package indicator

5 - Voltage code x 10 = V_{RRM} (see Voltage Ratings table)

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?96003			

Vishay Semiconductors

MTC

DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.