

Arty Z7: APSoC Zynq-7000 Development Board for Makers and Hobbyists

Arty Z7: APSoC Zynq-7000 Development Board for Makers and Hobbyists**Product Description** Digilent recommends the Arty Z7-20 with SDSoC voucher for those interested in video processing applications. Vivado Design Suite voucher not included - Vivado Design Suite Edition is available for free download (<u>Vivado WebPACK</u>).

The Arty Z7 is a ready-to-use development platform designed around the Zynq-7000[™] All Programmable System-on-Chip (AP SoC) from Xilinx. The Zynq-7000 architecture tightly integrates a dual-core, 650 MHz ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic. This pairing grants the ability to surround a powerful processor with a unique set of software defined peripherals and controllers, tailored by you for whatever application is being conquered. The design process is very straightforward and provides a systematic path between defining your custom peripheral set and bringing it's functionality up to a Linux OS running on the processor. Digilent provides a number of materials and resources for the Arty Z7 that will get you up and running with this process quickly.

Features:

Arty Z7 comes in two FPGA variants: Arty Z7-10 features Xilinx XC7Z010-1CLG400C. Arty Z7-20 features the larger Xilinx XC7Z020-1CLG400C. Arty Z7 has the features listed below:

	Arty Z7-10	Arty Z7-20
FPGA part	XC7Z010-1CLG400C	XC7Z020-1CLG400C
1 MSPS On-chip ADC	Yes	Yes
Processor	Dual ARM Cortex A9	Dual ARM Cortex A9
Look-up Tables (LUTs)	17,600	53,200
Flip-flops	35,200	106,400
Block RAM	270 КВ	630 КВ
Clock Management Tiles	2	4
Available Shield I/O	26	49
1 MSPS On-chip ADC	Yes	Yes
Processor	Dual ARM Cortex A9	Dual ARM Cortex A9
Look-up Tables (LUTs)	17,600	53,200
Flip-flops	35,200	106,400
Block RAM	270 КВ	630 КВ
Clock Management Tiles	2	4

- ZYNQ Processor
 - 650MHz dual-core Cortex-A9 processor
 - DDR3 memory controller with 8 DMA channels and 4 High Performance AXI3 Slave ports
 - High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO
 - Low-bandwidth peripheral controller: SPI, UART, CAN, I2C
 - Programmable from JTAG, Quad-SPI flash, and microSD card (Micro USB cable not included).
 - Programmable logic equivalent to Artix-7 FPGA
- Memory
 - 512MB DDR3 with 16-bit bus @ 1050Mbps
 - 16MB Quad-SPI Flash with factory programmed 48-bit globally unique EUI-48/64™ compatible identifier
 - microSD slot
- Power
 - Powered from USB or any 7V-15V external power source
- USB and Ethernet
 - Gigabit Ethernet PHY
 - USB-JTAG Programming circuitry
 - USB-UART bridge
 - USB OTG PHY (supports host only)
- Audio and Video
 - HDMI sink port (input)
 - HDMI source port (output)
 - PWM driven mono audio output with 3.5mm jack
 - Switches, Push-buttons, and LEDs
 - 4 push-buttons
 - 2 slide switches
 - 4 LEDs
 - 2 RGB LEDs
- Expansion Connectors
 - Two standard Pmod ports
 - 16 Total FPGA I/O
 - Arduino/chipKIT Shield connector
 - Up to 49 Total FPGA I/O (see table above)
 - 6 Single-ended 0-3.3V Analog inputs to XADC
 - 4 Differential 0-1.0V Analog inputs to XADC

What's Included

•

- Arty Board Zynq 7000 APSoC: choose between the Arty Z7-10 and Arty Z7-20 (Micro USB cable not included).
- Digilent cardboard packaging with protective foam