

Evaluating the ADAQ7767-1 Flexible Resistive Input, Anti-Alias, 24-Bit, 1 MSPS, µModule DAQ Solution

FEATURES

- Fully featured evaluation board for the ADAQ7767-1
- ▶ On-board IEPE sensor interface
- On-board reference and power supply circuits
- PC software for control and data analysis of time and frequency domain
- System demonstration platform-compatible (SDP-H1, high speed controller board (EVAL-SDP-CH1Z))
- Optional PMOD connector

EVALUATION KIT CONTENTS

EV-ADAQ7767-1FMC1Z evaluation board

EQUIPMENT NEEDED

- ▶ SDP-H1 controller board, system demonstration platform
- DC and AC signal source (Audio Precision[®] or similar high performance signal source)
- PC running Windows 7, Windows 8, or Windows 10 with USB 2.0 port

SOFTWARE NEEDED

- Analysis | Control | Evaluation (ACE) Software
- ▶ ADAQ7767-1 ACE plug-In

EVALUATION BOARD PHOTOGRAPH

GENERAL DESCRIPTION

The EV-ADAQ7767-1FMC1Z evaluation kit enables simple evaluation of the ADAQ7767-1, flexible resistive input, anti-alias, 24bit, 1 MSPS, µModule[®] data acquisition (DAQ) solution. The EV-ADAQ7767-1FMC1Z is used alongside a downloadable evaluation software to fully configure the features of the ADAQ7767-1 and display the conversion results in the time and frequency domains.

The EV-ADAQ7767-1FMC1Z connects to the USB port of a PC via the SDP-H1 system demonstration platform board. By default, the 3.3 V rail is supplied by the SDP-H1 and regulated by the on-board power solution to \pm 15 V and \pm 5.3 V to power the ADAQ7767-1 and its support components. An integrated electronic piezoelectric (IEPE)-interface and a pair of input buffers are included to evaluate the ADAQ7767-1 across a variety of input types.

For a full description of the ADAQ7767-1, see the ADAQ7767-1 data sheet, which must be consulted in conjunction with this user guide when using the EV-ADAQ7767-1FMC1Z evaluation board. For the current schematic, layouts, and bill of materials, see the EVAL-ADAQ7767-1 product page.

Figure 1. Evaluation Board Photograph

TABLE OF CONTENTS

Features	1
Evaluation Kit Contents	1
Equipment Needed	1
Software Needed	1
General Description	1
Evaluation Board Photograph	1
Quick Start Guide	3
Example Data Capture for the AC Signal	4
Example Data Capture for the DC Signal	5
How to Calculate the SINC3_DEC_RATE	
Value	7
Evaluation Board Hardware	8
Analog Inputs	9
IEPE Interface	9

REVISION HISTORY

3/2024—Revision 0: Initial Version

Power Supplies	10
Hardware Link Options	12
On-Board Connectors	14
Evaluation Board Software	15
Software Installation Procedures	15
Evaluation Board Setup Procedures	16
Connecting the EV-ADAQ7767-1FMC1Z	
and the SDP-H1 to a PC	16
Launching the Software	17
Description of the Analysis Window	19
Exiting the Software	23
Configuring the EV-ADAQ7767-1FMC1Z	
and the ADAQ7767-1	23
Example Data Capture	25

QUICK START GUIDE

To begin using the EV-ADAQ7767-1FMC1Z, take the following steps:

- Ensure the SDP-H1 controller board is disconnected from the PC, and then, install the ACE (Analysis, Control, Evaluation) software to evaluate the ADAQ7767-1. Restart the PC after the software installation is complete. For complete software installation instructions, see the Software Installation Procedures section.
- Connect the SDP-H1 controller board to the unpowered EV-ADAQ7767-1FMC1Z evaluation board. The J4 connector of the SDP-H1 board connects to the receiving socket, P5, on the EV-ADAQ7767-1FMC1Z printed circuit board (PCB), as shown in Figure 2.
- **3.** Ensure that the hardware links are in place according to the desired operation. For more details see Table 3.
- 4. Connect the 12 V DC supply to the SDP-H1 controller board and then connect the SDP-H1 to the PC using the supplied

USB cable. Choose to automatically search for the drivers for the SDP-H1 if prompted by the operating system.

- 5. Launch the ACE (Analysis, Control, Evaluation) software from the Analog Devices subfolder in the Programs menu.
- Double click ADAQ7767-1 Board to open the ADAQ7767-1 Board View window. The light emitting diode (LED) (DS2) then turns on to indicate that the board is powered up.
- Double click the ADAQ7767-1 Chip icon in the ADAQ7767-1 Board View window to open the ADAQ7767-1 Chip View window.
- Click Proceed to Analysis to show the ADAQ7767-1 Analysis window (see Figure 20).
- **9.** Apply an input signal at AINP, AINN or through the optional IEPE input (IEPE_IN), then click **Run Once**.
- To power off, first disconnect the input signal, close the software, and then, press the **Reset** button on the SDP-H1 board before disconnecting the power or USB.

Figure 2. Evaluation Board Setup

EXAMPLE DATA CAPTURE FOR THE AC SIGNAL

To capture data for the AC signal, take the following steps:

- Start the ACE Software software. On power-up, the ACE Software default sets the input range to IN2, ADC power mode to fast, and the filter to wideband low ripple with an ODR = 256 ksps.
- Connect the analog input signal (10.6 V_P) to AINP and AINN, and use IN2+ and IN2- as the input pins to the ADAQ7767-1 by setting the P1 and P2 jumpers (default: IN2, G = 4/11 V/V).
- **3.** To see the result directly, click **Run Once** (which captures 8192 samples by default).
- 4. The sampled data is now present in the data capture tabs (ADAQ7767-1 Board Waveform, ADAQ7767-1 Board Histogram, and ADAQ7767-1 Board FFT). To view the results, change between each of these tabs. Note that these settings give a dynamic range of approximately 106 dB, which can be seen in the **Results** section of the ADAQ7767-1 Board FFT tab.

Figure 3. FFT of 10.6 V_P, a 1 kHz Fully Differential Signal Applied to IN2+ and IN2- Pins of the ADAQ7767-1

EXAMPLE DATA CAPTURE FOR THE DC SIGNAL

A sinc3 filter with ODR = 50 SPS is a sweet spot for measurement of a pure DC signal because the sinc notch appears at 50 Hz and can be used to reject the 50 Hz line frequency. Take the following steps to setup the device under test (DUT) for a 50 SPS sinc3 filter:

- As an example for RMS noise, short the AINP and AINN connectors to GND and use IN2+ and IN2- as input pins to the ADAQ7767-1 by setting the P1 and P2 jumpers (default: IN2+ and IN2-, and G = 4/11 V/V).
- 2. Within the ADAQ7767-1 Board Chip View the ACE Software, click the Filter Configuration icon.
- **3.** Use the drop-down menu to select **Sinc3** (programmable decimation rate) option as shown in Figure 4.
- 4. To configure the Sinc3 Dec-Rate, type 13FF in the text box near the lower right corner as shown in Figure 5, which is also reflected in the SINC3_DEC_RATE_LSB and SINC3_DEC_ RATE_MSB registers located within the memory map of the ACE software. Then, click Apply Changes for this to take effect.

- Adjust the number of samples to be collected accordingly before Run Once is clicked. Collecting the default 8192 samples at 50 SPS takes 8192/50/60 = 2.73 minutes.
- 6. Set to 1024 samples, which takes approximately 20 seconds.
- 7. The same condition (sinc3 = 50 SPS) is used to measure the low frequency noise, as specified in the ADAQ7767-1 data sheet. In the ADAQ7767-1 Board Histogram tab, noise is displayed as a transition noise in LSB. To compare the referred to input (RTI), low frequency noise in µV RMS found in the ADAQ7767-1 data sheet, apply the following formula:

RTI Noise
= Transition Noise × 1 LSB
= Transition Noise ×
$$\frac{4.096}{2^{24-1} \times AFE_GAIN}$$
 (1)
= Transition Noise × $\frac{488 \text{ nV}}{AFE_GAIN}$

For example, using IN2+ and IN2– with the measured transition noise = 0.778 LSB = 1.044 μV RMS RTI.

Figure 4. Set the Digital Filter Type

EXAMPLE DATA CAPTURE FOR THE DC SIGNAL

Figure 6. Histogram of Output Codes with IN2+ and IN2- Shorted to GND and Sinc3 = 50 SPS

EXAMPLE DATA CAPTURE FOR THE DC SIGNAL

HOW TO CALCULATE THE SINC3_DEC_RATE VALUE

By default, the EV-ADAQ7767-1FMC1Z provides the DUT with a MCLK of approximately 16.384 MHz.

To achieve an ODR = 50 SPS using the sinc3 filter, use the following equation:

$$ODR = \frac{MCLK}{MCLK_DIV \times DEC_RATE}$$
(2)

Determine the DEC_RATE, and assume the ADAQ7767-1 is using an MCLK_DIV = 2:

$$DEC_RATE = \frac{MCLK}{MCLK_DIV \times ODR} = 163,840$$
 (3)

The SINC3_DEC_RATE_MSB and SINC3_DEC_RATE_LSB registers (Register 0x1A and Register 0x1B, respectively) increment the value in the registers by one and then multiply them by 32 to give the actual decimation rate. To set the decimation rate to 163,840, use the following equation:

$$Value = \frac{DEC_RATE}{32} - 1 = 5119$$
 (4)

The values written to the sinc3 decimation registers are 5119 or 0x13FF.

Refer to the ADAQ7767-1 data sheet for more information on the DUT register configuration.

Figure 7 shows the simplified block diagram of the EV-ADAQ7767-1FMC1Z evaluation board connected to the SDP-H1 controller board. The EV-ADAQ7767-1FMC1Z is installed with the featured ADAQ7767-1 μ Module (U1) and ADR444 4.096 V reference (U4), and the on-board power solution consisting of the ADP5076 (VR1), ADP7142 (U8), ADP7182 (U9), and LTC3526LB-2 (U7). A pair of ADA4625-1 (U2 and U3) op amps can be used to buffer the inputs, while the on-board IEPE interface can be used to bias the IEPE sensor used as an input to the signal chain.

Figure 7. Simplified Evaluation Board Block Diagram

ANALOG INPUTS

The analog inputs, AINP and AINN, are accessible either through the Subminiature Version B (SMB) connectors, or the turrets (T1 and T2). A Subminiature Version A (SMA) connector is also provided to connect to the IEPE sensor, which receives its current bias from the on-board IEPE interface.

The default settings of the EV-ADAQ7767-1FMC1Z are as follows:

- Analog inputs to ADAQ7767-1 obtained from AINP and AINN, and IEPE_IN is disconnected by P4.
- ▶ The AINP and AINN inputs are buffered by a pair of optional amplifiers, ADA4625-1 (U2 and U3).
- Using the ADR444 (U4) as a 4.096 V reference and the IN2+ and IN2- inputs of the ADAQ7767-1, the full-scale differential input range is ±11.2 V.

See Table 2 for the suggested power supply rails and Table 3 for the necessary jumper positions and link options for the different input configurations and input ranges. It is recommended to use a low distortion AC source, such as the Audio Precision APx555 series, when evaluating the dynamic performance of the ADAQ7767-1.

IEPE INTERFACE

An IEPE sensor can be used as an input to the EV-ADAQ7767-1FMC1Z through the SMA connector at IEPE_IN. The on-board IEPE interface biases the IEPE sensor, which operates

Table 1. Jumper Settings when Applying an IEPE Sensor Input

by providing a 24 V rail at HV_VDD via the on-board supply or an external supply, and switches on SW_S1 and SW_S2 on the S2 mechanical switch. Inserting P4 connects the IEPE input to the ADAQ7767-1. With a dropout of 1.2 V across the current source (LT3092, U6) delivering a 4.5 mA bias to the IEPE sensor, this circuit complies to the usable excitation voltage and current bias of a typical IEPE interface (see Figure 7). For overvoltage protection from the IEPE sensor, the ADG5421F (U5) fault protection switch is placed at the IEPE input. Under normal operating conditions, the IEPE LED indicator (DS1) is on.

Most IEPE sensors have their output biased at 8 V to 14 V, with an AC swing ±5 V around the bias. The EV-ADAQ7767-1FMC1Z can be modified to allow an AC-coupled or DC-coupled IEPE input. By default, the 0 Ω resistor at R13 configures the IEPE input to be DC-coupled. The ADAQ7767-1 28 V (IN3) input is designed to allow direct DC-coupled connections to IEPE sensors. For an AC-coupled IEPE input, simply replace R13 with a ceramic capacitor, and insert a resistor at R14 to implement a high-pass filter with a cut-off frequency at the subhertz range. The AC-coupled IEPE signal swing is suitable for the 4.096 V (IN1) or the 11.2 V (IN2) input ranges of the ADAQ7767-1, depending on the AC swing of the IEPE sensor.

Table 1 summarizes the recommended jumper settings related to using an IEPE sensor input.

Function	Link	Recommended Jumper Position for IEPE Input	Comment
IEPE Input	P4	Insert jumper	Connects IEPE_IN to ADAQ7767-1.
Single-Ended Input	P3	Insert jumper	Shorts AINN to GND to allow single-ended input.
Input Buffer U2	JP1	Position A	U2 acts as a high-impedance buffer to IEPE_IN.
	JP2	Position A	
Input Buffer U3	JP3	Position B	Bypasses U3 to allow direct INx- short to GND.
	JP4	Position B	
Input Range	P1, P2	Connect Pin 1 and Pin 2 (IN3+ and IN3-)	Recommends use of IN3 (28 V) input range, which is designed for a DC-coupled IEPE sensor input.
IEPE Input Coupling	R13	0 Ω at R13	IEPE input is DC-coupled (default). Optionally, replace R13 with a capacitor to have an AC-coupled IEPE input.
IEPE Interface Supply (HV_VDD)	JP5	Position A	IEPE interface uses on-board supply INT_VDD (default). Optionally, change to Position B to use an external supply, EXT_VDD.
S2	SW_S1	High	ADG5421F Channel 1 Enable. Connects IEPE interface to IEPE_IN.
		Low	Disconnects IEPE interface from IEPE_IN.
	SW_S2	High	ADG5421F Channel 2 Enable. Connects IEPE_IN to ADAQ7767-1.
		Low	Disconnects IEPE_IN from ADAQ7767-1.

POWER SUPPLIES

The EV-ADAQ7767-1FMC1Z obtains its power from the 3.3 V rail of the SDP-H1 by default, which is boosted and regulated to provide the supply rails required by the ADAQ7767-1, voltage reference, additional signal conditioning, and the IEPE interface.

The ADAQ7767-1 contains an internal 5 V low dropout (LDO) regulator with the purpose of simplifying the power solution and layout of the signal chain µModule. Together with this internal LDO regulator, the ADAQ7767-1 can operate with only a 5.3 V and 3.3 V rail. In the EV-ADAQ7767-1FMC1Z, the 3.3 V from the SDP-H1 directly powers the VDD_IO. This 3.3 V rail is boosted to 5.3 V by the LTC3526LB-2, which is then regulated by the internal LDO regulator to 5 V, powering VDD_FDA, VDD_ADC, VDD2_ADC, the ADR444 reference voltage, and the ADA4807-1 optional reference buffer. The 5.3 V LED (DS2) is on when a 5.3 V rail is powered by the on-board or external 5.3 V supply.

The higher voltage rails used by the input buffers and the IEPE interface, VDD/VSS_BUF and HV_VDD, are connected to the onboard rails, INT_VDD and INT_VSS, which are powered by the ADP5076 dual switching regulator, ADP7142 positive LDO regulator, and ADP7182 negative LDO regulator, as shown in Figure 8. This power tree boosts and regulates the 3.3 V to a default of +15 V and -15 V. For the larger input signal covered by the IN3 (28 V) range, the buffers and IEPE interface may require a higher voltage supply. In this case, the voltage of the rails can be increased to 28 V by moving the 0 Ω links at the feedback resistors of the ADP5076, ADP7124, and ADP7182. As an option, VDD/VSS_BUF and HV_VDD can also be connected to the external supply rails,

EXT_VDD and EXT_VSS. See Table 2 for the recommended power supply rails when using the buffers and/or the IEPE interface and Table 3 for the power supply link options.

Each supply is decoupled at the point where the supply enters the EV-ADAQ7767-1FMC1Z and again at the point where the EV-ADAQ7767-1FMC1Z connects to each device. The ADAQ7767-1 has built-in, 0.1 µF supply decoupling capacitors on the VDD_FDA, VDD_ADC, VDD2_ADC, and VDD_IO supply pins.

The power solution for the EV-ADAQ7767-1FMC1Z was designed with the aid of LTpowerCAD. This tool is helpful in planning and designing power systems, with component recommendations to optimize the overall power solution.

Figure 8. VDD_BUF, VSS_BUF, and HV_VDD Jumper Settings

		IEPE Supply HV VDD	Buffer Supply VDD_BUF (V)		_	
Input Range (V)	ADAQ7767-1 Input Pins	(V)	Positive	Negative	Comments	
±4.096 (Voltage Input to	IN1+ and IN1-	Not applicable	P_BST = 17	N_BST = -17	By default, buffers use on-	
AINP/AINN)			VDD_BUF = INT_VDD = 15	VSS_BUF = INT_VSS = -15	board supplies, INT_VDD and INT_VSS, set at ±15V.	
±4.096 (AC-Coupled IEPE	IN1+ to IEPE_IN	HV_VDD = EXT_VDD =	P_BST = 17	N_BST = -17	If input is from an IEPE	
Input to IEPE_IN)	IN1- to GND	24	VDD_BUF = INT_VDD = 15	VSS_BUF = INT_VSS = -15	sensor applied to IEPE_IN using this input range, AC- coupled IEPE_IN to the buffer by replacing R13 with a capacitor. Connect HV_VDD to EXT_VDD and externally supply EXT_VDD with 24 V.	
±11.2 (Voltage Input to AINP/ AINN)	IN2+ and IN2-	Not applicable	P_BST = 17, VDD_BUF = INT_VDD = 15	N_BST = -17, VSS_BUF = INT_VSS = -15	By default, buffers use on- board supplies, INT_VDD and INT_VSS, set at ±15 V.	
±11.2 (AC-Coupled IEPE Input to IEPE_IN)	IN2+ to IEPE_IN	HV_VDD = EXT_VDD = 24	P_BST = 17	N_BST = -17	If input is from an IEPE sensor applied to IEPE_IN using this input range, AC- coupled IEPE_IN to the buffer by replacing R13 with a capacitor. Connect HV_VDD to EXT_VDD and	

Table 2. Recommended Power Supply Rails when Using Input Buffers and/or An IEPE Interface

		IEPE Supply HV VDD	Buffer Supply VDD_BUF (V)			
Input Range (V)	ADAQ7767-1 Input Pins	(V)	Positive	Negative	Comments	
	IN2- to GND		VDD_BUF = INT_VDD = 15	VSS_BUF = INT_VSS = -15	externally supply EXT_VDD with 24 V.	
2.5 to 21.5 Unipolar Single-	IN3+ = Input	P_BST = 26	P_BST = 26	N_BST = -7	This input range is designed	
Ended (Either DC-Coupled IEPE Input to IEPE_IN or Voltage Input to AINP/AINN)	IN3- to GND	HV_VDD = INT_VDD = 24	VDD_BUF = INT_VDD = 24	VSS_BUF = INT_VSS = -5	for DC-coupled IEPE inputs. Change supply rails to suit input range. Caution: ensure that VDD_BUF – VSS_BUF does not exceed the ADA4625-1 operating voltage of 36 V.	
−2.5 to −21.5, Unipolar	IN3+ = Input	Not applicable	P_BST = 7	N_BST = -26	Change supply rails to	
Single-Ended (Voltage Input to AINP/AINN)	IN3- to GND		VDD_BUF = INT_VDD = 5	VSS_BUF = INT_VSS = -24	suit input range. Caution: ensure that VDD_BUF – VSS_BUF does not exceed the ADA4625-1 operating voltage of 36 V.	
−2.5 to −21.5 Unipolar Single- Ended (IEPE)	Not applicable	Not applicable	Not applicable	Not applicable	Range not available for on-board IEPE interface, IEPE IN.	

HARDWARE LINK OPTIONS

Multiple link options must be set correctly for the appropriate operating setup before applying the power and signal to the EV-

Table 3. Default Links and Link Options

ADAQ7767-1FMC1Z. Table 3 shows the default link positions for the EV-ADAQ7767-1FMC1Z.

Function	Link	Default Position	Comment
Input Buffer U2	JP1	Position A	AINP is buffered by default. Optionally, bypass the buffer by
	JP2	Position A	changing JP1 and JP2 to Position B.
Input Buffer U3	JP3	Position A	AINN is buffered by default. Optionally, bypass the buffer by
	JP4	Position A	changing JP3 and JP4 to Position B.
Input Range	P1/P2	Connect Pin 3 and Pin 4 (IN2+ and IN2-)	The IN2 input range is selected by default. Optionally, connect Pin 5 and Pin 6 (IN1+ and IN1-) for both P1 and P2 to use IN1, and connect Pin 1 and Pin 2 (IN3+ and IN3-) for both P1 and P2 to use IN3.
Single-Ended Input	P3	No connect	AINN is floating by default. Optionally, for a single-ended input, insert a jumper at P3 to short AINN to GND. In addition, bypass Buffer U3 by changing JP3 and JP4 to Position B.
IEPE Input	P4	No connect	The analog inputs to the ADAQ7767-1 are obtained from AINP and AINN by default. Optionally, insert jumpers at P3 and P4 and mechanically switch on SW_S1 and SW_S2 from S2 to use the IEPE sensor as an input. In addition, bypass Buffer U3 by changing JP3 and JP4 to Position B.
IEPE Interface Supply (HV_VDD)	JP5	Position A	The IEPE interface uses an on-board supply, INT_VDD. Optionally, change to Position B to use the external supply, EXT_VDD.
Buffer Supply (VDD_BUF)	JP7	Position A	Buffers use the on-board supply, INT_VDD, by default. Optionally, change to Position B to use the external supply, EXT_VDD.
Buffer Supply (VSS_BUF)	JP8	Position A	Buffers use the on-board supply, INT_VSS, by default. Optionally, change to Position B to use the external supply, EXT_VSS.
S2	SW_S1	Low	ADG5421F Channel 1 Enable. Disconnects the IEPE interface from IEPE_IN.
		High	Connects the IEPE interface to IEPE_IN
	SW_S2	Low	ADG5421F Channel 2 Enable. Disconnects IEPE_IN from the ADAQ7767-1.
		High	Connects IEPE_IN to the ADAQ7767-1.
			To use the IEPE sensor as input, insert jumpers at P3 and P4 and switch on SW_S1 and SW_S2. In addition, bypass Buffer U3 by changing JP2 and JP4 to Position B.
	GPIO0, GPIO1, GPIO2, GPIO3	All low, disconnected	Reserved. Do not use.
	M0_FDA, M1_FDA	All low, disconnected	Reserved. Do not use.
IEPE Input Coupling	R13	0 Ω at R13	The IEPE input is DC-coupled by default. Optionally, replace R13 with a capacitor to have an AC-coupled IEPE input.
3.3 V Supply	R106	0 Ω at R106	The 3.3V supply is from the EVAL-SDP-CH1Z by default. Optionally, remove R106 and connect the external supply to the 3V3 turret.
5.3 V Supply	R57	0 Ω at R57	The IN_LDO pin of the ADAQ7767-1 uses the on-board 5.3 V supply. LED DS1 is on. Optionally, remove R57 and connect the external supply to the 5V3 turret.

Table 3. Default Links and Link Options (Continued)

Function	Link	Default Position	Comment
VDD2_ADC Supply	R16	0 Ω at R16	The VDD2_ADC pin of the ADAQ7767-1 uses the internal LDO regulator by default. Optionally, remove R16 and connect the external supply to the VDD2_ADC turret.
ADP5076 VR1 Positive Output	R67	0 Ω at R67	P_BST is set at 17 V by default. Optionally, move 0 Ω to R68
Voltage (P_BST)	R68	R68 not placed	to set P_BST = 26 V. In addition, set the ADP7142 output
	R69	R69 not placed	voltage, IN I_VDD, to 24 V by moving the 0 Ω from R91 to R92. Also, optionally move 0 Ω to R69 to set P_BST = 7 V. In addition, set the ADP7142 output voltage, INT_VDD, to 5 V by moving the 0 Ω from R91 to R100.
ADP5076 VR1 Negative Output	R61	0 Ω at R61	N_BST is set at -17 V by default. Optionally, move 0 Ω to
Voltage (N_BST)	R66	R66 not placed	R66 to set N_BST = -26 V. In addition, set the ADP7182
	R71	R71 not placed	output voltage, IN1_VSS, to -24 V by moving 0 Ω from R80 to R82. Also, optionally, move 0 Ω to R71 to set N_BST = -7 V. In addition, set the ADP7182 output voltage, INT_VSS, to -5 V by moving 0 Ω from R80 to R85.
ADP7142 Output Voltage (INT_VDD)	R91	0 Ω at R91	INT_VDD at 15 V by default. Optionally, move 0 Ω to R92 to
	R92	R92 not placed	set INT_VDD = 24 V. In addition, set the ADP5076 positive
	R100	R100 not placed	output voltage, P_BS1, to 26 V by moving 0 Ω from R67 to R68.Also, optionally move 0 Ω to R100 to set INT_VDD = 5 V. In addition, set the ADP5076 positive output voltage, P_BST, to 7 V by moving 0 Ω from R67 to R69.
ADP7182 Output Voltage (INT_VSS)	R80	0 Ω at R80	INT_VSS is at –15 V by default. Optionally, move 0 Ω to
	R82	R82 not placed	R82 to set INT_VSS = -24 V. In addition, set the ADP5076
	R85	R85 not placed	from R61 to R66. Also, optionally, move 0 Ω to R85 to set INT_VSS = -5 V. In addition, set the ADP5076 negative output voltage, N_BST, to -7 V by moving 0 Ω from R61 to R71.
Reference Buffer A2	R20	11 Ω at R20	Reference Buffer A2 is bypassed; the ADR444 (voltage
	R19	R19 not placed	reference) output directly connects to the ADAQ7767-1 by
	R26	R26 not placed	detault. Uptionally, remove 11 Ω at K20 and insert 0 Ω at R19 R26, and R18 to use the reference buffer
	R18	R18 not placed	

ON-BOARD CONNECTORS

Table 4 provides information about the external on-board connectors on the EV-ADAQ7767-1FMC1Z.

Table 4. On-Board Connectors

Connector	Function
AINP/AINN	SMB analog inputs for AC signals
T1/T2	Turrets for DC analog inputs
IEPE_IN	SMA for the IEPE sensor input
MCLK	SMB for the external MCLK
P5	FMC connects all digital signals to the SDP-H1 controller board
P6	PMOD connector allows the user to interface with the board
LDO_OUT	Turret to connect to the external voltage reference input and voltage reference buffer supply
3V3	Turret to connect to the external 3.3 V supply
5V3	Turret to connect to the external 5.3 V supply
VDD2_ADC	Turret to connect to the external VDD2_ADC supply
EXT_VDD	Turret to connect to the external positive supply for the buffers and/or the IEPE interface
EXT_VSS	Turret to connect to the external negative supply for the buffers

SOFTWARE INSTALLATION PROCEDURES

Before using the EV-ADAQ7767-1FMC1Z, download and install the **Analysis | Control | Evaluation (ACE) Software**. In addition, download the ADAQ7767-1 ACE plug-in from the **ACE Evaluation Board Plug-ins** section of the **ACE Software** page or from the EV-ADAQ7767-1FMC1Z product page.

The **ACE Software** is a desktop software application that allows the evaluation and control of multiple evaluation systems across the Analog Devices, Inc., product portfolio. The installation process consists of the ACE Software and SDP-H1 driver installations.

Warning

To ensure that the evaluation system is correctly recognized when it is connected to the PC, install the ACE Software and the SDP-H1 driver before connecting the EV-ADAQ7767-1FMC1Z and the SDP-H1 controller board to the USB port of the PC.

Installing the ACE Software

To install the ACE software, take the following steps:

- 1. Download the ACE software to a Windows[®]-based PC.
- Double-click the ACEInstall.exe file to begin the installation. By default, the software is saved at C:\Program Files (x86)\Analog Devices\ACE.
- **3.** A dialog box appears seeking permission to allow the program to make changes to the PC. Click **Yes** to begin the installation process.
- 4. Click Next > to continue the installation, as shown in Figure 9.

Figure 9. Evaluation Software Install Confirmation

5. Read the software license agreement and click **I Agree** (see Figure 10).

ACE Setup	
License Agreement Please review the license terms before installing ACE.	$\mathbf{\rho}$
Press Page Down to see the rest of the agreement.	
SOFTWARE LICENSE AGREEMENT 20170526-ACE-CTSLA	* =
Analog Devices, Inc. a Massachusetts corporation, with p offices at Three Technology Way, Norwood, Massachusett 02062 and its licensors (together 'Analog Devices') are w license the software and related documentation made availa download from the Analog Devices web site (the 'Li Software') to you (personally or on behalf of your emplo annirchia) ('Licensee') ONI V JE YOIL ACCEPT THIS LI	rincipal s, USA illing to able for censed yer, as CENSE
If you accept the terms of the agreement, click I Agree to continue. You must a agreement to install ACE.	accept the
Nullsoft Install System v3.01	Cancel
< Back I Agree	Cancel

Figure 10. License Agreement

010

6. Choose an installation location and click Next (see Figure 11).

ACE Setup	- • 💌
Choose Install Location Choose the folder in which to install ACE.	
Setup will install ACE in the following folder. To install in a differen select another folder. Click Next to continue.	t folder, click Browse and
Destination Folder StyProgram Files (x86))Analog Devices\ACE	Browse
Space required: 93.1MB Space available: 15.1GB	
Nullsoft Install System v3.01 < Back	lext > Cancel

Figure 11. Choose Install Location

 Select the Pre-Requisites checkbox to include the installation of the SDP-H1 driver. Click Install (see Figure 12).

ACE Setup		- • •
Choose Components Choose which features of ACE	you want to install.	Q
Check the components you wa install. Click Install to start the	ant to install and uncheck the installation.	e components you don't want to
Select components to install:	PreRequisites	Description Position your mouse over a component to see its description.
Space required: 93.1MB		
Nullsoft Install System v3.01 ——		
	< Back	Install Cancel

Figure 12. Choose Components

8. The Windows Security screen appears. Click Install (see Figure 13). The installation is in progress. No action is required (see Figure 14).

Figure 13. Windows Security Window

Figure 14. Installation in Progress

 The installation is complete (see Figure 15). Click Next > and then Finish to complete.

Figure 15. Installation Complete

EVALUATION BOARD SETUP PROCEDURES

The EV-ADAQ7767-1FMC1Z connects to the SDP-H1. The SDP-H1 is the communication link between the PC and the EV-ADAQ7767-1FMC1Z. Figure 2 shows a diagram of the connections between the EV-ADAQ7767-1FMC1Z and the SDP-H1.

CONNECTING THE EV-ADAQ7767-1FMC1Z AND THE SDP-H1 TO A PC

After installing the **ACE Software**, take the following steps to set up the EV-ADAQ7767-1FMC1Z and SDP-H1:

- 1. Ensure that all configuration links are in the appropriate positions, as detailed in Table 3.
- 2. Connect the EV-ADAQ7767-1FMC1Z securely to the 160-way connector on the SDP-H1. The EV-ADAQ7767-1FMC1Z does not require an external power supply adapter.
- **3.** Connect the SDP-H1 to the PC via the USB cable included in the SDP-H1 kit.

After completing the steps in the Evaluation Board Software section and the Evaluation Board Hardware section, set up the system for data capture as follows:

- Run the Found New Hardware Wizard after the SDP-H1 system demonstration platform controller board is plugged into the computer. If using Windows XP, you may need to search for the SDP-H1 drivers. Automatically search for the drivers for the SDP-H1 controller board if prompted by the operating system.
- Check that the EV-ADAQ7767-1FMC1Z is connecting to the computer correctly using the Device Manager of the PC. Access the Device Manager as follows:
 - a. Right click My Computer for Windows 7 or This PC for Windows 8 and Windows 10 and then click Manage.
 - **b.** A dialog box appears asking for permission to allow the program to make changes to the computer. Click **Yes**.
 - c. The Computer Management window appears. Click Device Manager from the list of System Tools (see Figure 16).
 - If the SDP-H1 controller board appears under ADI Development Tools, the driver software is installed, and the EV-ADAQ7767-1FMC1Z is connecting to the PC correctly.

Figure 16. Checking That the Evaluation Board Is Connected to the PC Correctly

LAUNCHING THE SOFTWARE

When the EV-ADAQ7767-1FMC1Z and SDP-H1 boards are properly connected to the PC, launch the **ACE Software**. To launch the **ACE Software**, take the following steps:

- From the Start menu, select All Programs > Analog Devices > ACE > ACE.exe to open the main software screen (see Figure 17).
- 2. The ADAQ7767-1 Board icon appears in the Attached Hardware section.
- If the EV-ADAQ7767-1FMC1Z is not connected to the USB port via the SDP-H1 controller board when the software is launched,

the **ADAQ7767-1 Board** icon does not appear in the **Attached Hardware** section. Connect the EV-ADAQ7767-1FMC1Z and SDP-H1 board to the USB port of the PC and wait a few seconds, then continue following these instructions.

- 4. Double-click the ADAQ7767-1 Board icon to open the ADAQ7767-1 Board View (see Figure 18).
- 5. Double click the ADAQ7767-1 Board Chip icon to open the ADAQ7767-1 Board Chip View (see Figure 19).
- 6. Click Software Defaults and then click Apply Changes.
- 7. Click Proceed to Analysis to open the ADAQ7767-1 Board Analysis window shown in Figure 20.

Analysis Control Evaluation 1.29	.3270.1441 (x64)		1-	- 0	×
	Start				Ē
Home	Start 🗙 Plug-in Manager 🗙				
Systems	Attached Hardware				
Image: Plug-in Manager Remoting Console Image: Plug-in Manager Image: Plug-in Manager	ADADYTET 1 Basel Version 1 2022 39400 * * *				
	Explore Without Hardware				
	Plugin ID	Version	Compatible Controllers	Verified	
	AD4000 Eval Board	1.2021.16200	SDPH1	٠	
	AD4001 Eval Board	1.2021.16200	SDPH1		
	AD4002 Eval Board	1.2021.16200	SDPH1	*	
	AD4003 Eval Board	1.2021.16200	SDPH1		
	AD4020 Eval Board	1.2021.16200	SDPH1		
	AD4030-24 Board	1.2022.34200	ADIIOZedBoard, ADIIOControllerBoard		
	AD4630-16 Board	1.2022.34200	ADI/OZed8oard, ADI/OController8oard		
	AD4630-24 Board	1.2022.34200	ADIIOZed8oard, ADIIOController8oard		
	AD7380 Eval Board	1.2023.36500	SDPH1		
	AD7390-4 Eval Board	1.2023.36500	SDPH1		
	AD7381 Eval Board	1.2023,36500	SDPH1		
	AD7383 Eval Board	1.2023.36500	SDPH1		
	AD7383-4 Eval Board	1.2023.36500	SDPH1		
	AD7384 Eval Board	1.2023,36500	SDPH1		
	AD7386 Eval Board	1.2023,36500	SDPH1		
	AD7386-4 Eval Board	1.2023.36500	SDPH1		
Check For Updates	AD7388 Eval Board	1.2023.36500	SDPH1		
(1) Report Issue					
Maintain Application Usage Logging			Add Selecte	ed Subsystem	(6)
🙆 klalo 🐁 Sattione	C Ready				82

Figure 17. ADAQ7767-1 Board ACE Software Main Window

Figure 19. ADAQ7767-1 Board Chip View

DESCRIPTION OF THE ANALYSIS WINDOW

Click **Proceed to Analysis** in the **ADAQ7767-1 Board Chip View** window (see Figure 19) to open the **ADAQ7767-1 Board Analysis** window. The **ADAQ7767-1 Board Analysis** window showcases the performance of the EV-ADAQ7767-1FMC1Z. Before performing any measurements, set the **CAPTURE SETTINGS** and **ANALYSIS** settings. The ADAQ7767-1 Board Analysis window contains the ADAQ7767-1 Board Waveform (see Figure 21), ADAQ7767-1 Board Histogram (see Figure 22), and ADAQ7767-1 Board FFT tabs (see Figure 23).

Figure 20. ADAQ7767-1 Board Analysis Window

CAPTURE SETTINGS

The output data rate (**ODR**:) is automatically calculated by the software based on the selected ADC filter settings. By default, **ODR**: is set to 256 kSPS (see Figure 20).

The **Sample Count:** is set to 8192 samples by default, but it can be changed to a selection from the dropdown menu, ranging from 512 to 131072 samples.

Click **Run Once** in the **CAPTURE SETTINGS** section to start a data capture of the samples at the sample rate specified in the **Sample Count** dropdown menu. These samples are stored on the FPGA device and are only transferred to the PC when the sample frame is complete.

Click **Run Continuously** in the **CAPTURE SETTINGS** section to start a data capture that gathers samples continuously with one batch of data at a time, which runs the **Run Once** operation continuously.

ANALYSIS

The **General Settings** section sets up the preferred configuration of the fast Fourier transform (FFT) analysis. This configuration sets the number of tones to analyze and the fundamental strategy to use (see Figure 20).

The **Windowing** section sets up the preferred **Window** type to use in the FFT analysis. This section also configures the other parameters to include in the analysis (that is, the **Number of Harmonics, Fundamental Bins, Harmonic Bins, DC Bins**, and **Worst Other Bins**). The **Single Tone Analysis** and **Two Tone Analysis** sections set up the fundamental frequencies included in the FFT analysis. When analyzing one frequency, use the **Single Tone Analysis section**, and when analyzing two frequencies, use the **Two-Tone Analysis** section.

RESULTS

Click **Export** to export the captured data. The waveform, histogram, and FFT data are stored in .xml files along with the values of the parameters at capture (see Figure 20).

ADAQ7767-1 Board Waveform Tab

The **Waveform Results (Volts)** section displays time domain characteristics of the signal, such as **Sample Frequency**, **Samples**, **Maximum**, **Minimum**, **RMS**, **Average**, and **Peak-to-Peak**.

The waveform graph shows each successive sample of the μ Module output. The user can zoom in on and pan across the waveform using the embedded waveform tools.

Within the dropdown menu of the display unit (shown with the **Volts** option selected in Figure 21) select whether the data graph displays in units of hexadecimal, volts, or codes. The axis controls are dynamic.

When selecting either the y-scale dynamic or x-scale dynamic, the corresponding axis width automatically adjusts to show the entire range of the μ Module results after each batch of samples.

Figure 21. ADAQ7767-1 Board Waveform

ADAQ7767-1 Board Histogram Tab

The **ADAQ7767-1 Board Histogram** tab contains the **Histogram** graph and the **RESULTS** pane, as shown in Figure 22.

The **RESULTS** pane displays the information related to DC performance.

The **Histogram** graph displays the number of hits per code within the sampled data. This graph is useful for DC analysis and indicates the noise performance of the device.

Figure 22. ADAQ7767-1 Board Histogram

ADAQ7767-1 Board FFT Tab

The **ADAQ7767-1 Board FFT** tab displays FFT information for the last batch of samples gathered, as shown in Figure 23 and Figure 24.

The **Signal** section displays the fundamental frequency (**Fund Frequency**) and fundamental power (**Fund Power**). The **Noise**

section displays the signal-to-noise ratio (SNR) and other noise performance results. The **Distortion** section displays the harmonic content of the sampled signal, and the **DC** section displays the **DC Power** when viewing the FFT analysis.

Figure 23. ADAQ7767-1 Board FFT Without Buffers

Figure 24. ADAQ7767-1 Board FFT with Shorted Inputs

EXITING THE SOFTWARE

To exit the software, go to **File** in the upper right tab and then click **Close ACE**.

CONFIGURING THE EV-ADAQ7767-1FMC1Z AND THE ADAQ7767-1

Input Range Configuration

To select the input range, take the following steps:

- Configure the P1 and P2 jumpers on the EV-ADAQ7767-1FMC1Z to either IN1+ and IN1-, IN2+ and IN2-, or IN3+ and IN3-.
- To properly detect and scale the applied input voltage when displaying results in volts, in the ADAQ7767-1 Board Chip View of the ACE Software, click on the ACTIVE LPF and select the corresponding input range, and then click Apply Changes (see Figure 25).

Figure 25. Input Range Selection Menu

ADC Configuration

Apart from the input range, other settings configurable from the ADAQ7767-1 Board Chip View pertain to the core ADC settings (see Figure 19). Applied changes to the core ADC through the ADAQ7767-1 Board Chip View are automatically reflected in their respective registers, which can also be read or written through the ADAQ7767-1 Board Memory Map (see Figure 26). The ADAQ7767-1 Board Memory Map contains the complete list of registers.

The following are the core ADC settings configurable in **ADAQ7767-1 Board Chip View**:

- LINEARITY BOOST BUFFERS
- ▶ REFERENCE BUFFERS
- Power Control
- CLOCK MANAGEMENT
- ▶ Filter configuration (see **WIDEBAND FIR** box in Figure 19)
- Digital interface and logic

DEVICES Start > System	em > Subsystem_1 >	ADAQ7767-1 Board > ADAQ7767-1	> ADAQ7767-1 Memory	Map					
Start X F	lug-in Manager 🗙 System	X O ADAQ7767-1 Board X	ADAQ7767-1 X ADAQ	7767-1 Analysis 🗙 ADAQ77	767-1 Memory Map 🗙				
\ ≡	\= ■	🖆 🚺 🛛			Show				
Apply Changes	Apply Read All Selected	Read Selected Reset Chip	Defaults	Export Import Si	Chip View Bitfields de-By-Side				
Registers									
Addr	ess (Hex)	Name		Y Register Map	Y Side Effects Y	Modified T	Data (Hex)	Data (Binary)	
Comparison + 00000	003	CHIP_TYPE		ADAQ776x-1					0 0 0 0 0 1
Sessions Y + 0000	004	PRODUCT_ID_L		ADAQ776x-1					0 0 0 0 0 0
~ + 0000	005	PRODUCT_ID_H		ADAQ776x-1					0 0 0 0 0 0
+ 0000	006	CHIP_GRADE		ADAQ776x-1					0 0 0 0 0 0
+ 00000	A004	SCRATCH_PAD		ADAQ776x-1			6C		0 1 1 0 1 1
+ 0000	100C	VENDOR_L		ADAQ776x-1					0 1 0 1 0 1
+ 0000	00D	VENDOR_H		ADAQ776x-1			04		0 0 0 0 1
+ 0000	014	INTERFACE_FORMAT		ADAQ776x-1			01		0 0 0 0 0 0
+ 0000	015	POWER_CLOCK		ADAQ776x-1	×		33		0 0 1 1 0 0
+ 0000	016	ANALOG		ADAQ776x-1			00		0 0 0 0 0 0
+ 0000	018	CONVERSION		ADAQ776x-1	×		00		0 0 0 0 0 0
- 00000	019	DIGITAL_FILTER		ADAQ776x-1	~		40		0 1 0 0 0 0
DE	C_RATE								
Fit	er								1 0 0
EN	_60HZ_REJ								0
+ 00000	101A	SINC3_DEC_RATE_MS8		ADAQ776x-1			00		0 0 0 0 0 0
+ 00000	01B	SINC3_DEC_RATE_LSB		ADAQ776x-1			00		0 0 0 0 0 0
+ 00000	01C	DUTY_CYCLE_RATIO		ADAQ776x-1			00		0 0 0 0 0 0
+ 0000	01D	SYNC_RESET		ADAQ776x-1	×		80		1 0 0 0 0 0
+ 0000	01E	GPIO_CONTROL		ADAQ776x-1	~		87		1 0 0 0 1
+ 0000	01F	GPIO_WRITE		ADAQ776x-1			04		0 0 0 0 1
+ 0000	020	GPIO_READ		ADAQ776x-1	×				0 0 0 0 0 0
+ 00000	021	OFFSET_HI		ADAQ776x-1			00		0 0 0 0 0 0

Figure 26. ADAQ7767-1 Board Memory Map

Reset Switches

Press the S1 switch to reset the DUT. Resetting the DUT resets all register settings to their default values.

A reset switch is also available on the SDP-H1 to reset the controller board. Note that resetting the controller board results in losing communication with the DUT.

The user can restart the software tool to re-initialize the EV-ADAQ7767-1FMC1Z.

EXAMPLE DATA CAPTURE

For an example data capture, see the Quick Start Guide section.

NOTES

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887-2356, U.S.A.