

5AC1D_3.6 series

5W - AC-DC converter

AC-DC Converter

5 Watt

Wide input voltage range 85-265VAC/120-380VDC

Transfer efficiency (typ. 84%)
Switching frequency: 50-60KHz

Protections: over current, short circuit, over voltage, under voltage, over temperature, self-furbish

Input and output highly isolated 3600VAC

PCB mounting

Plastic case, UL94 V-0 conform

Meets IEC62368/UL62368/ EN62368 test standard Introducing our cutting-edge 5AC1D_3.6 series engineered for robust performance and uncompromised safety: With an extensive input voltage range spanning 85-265VAC/120-380VDC, this power module ensures adaptability across diverse operational settings. Boasting a remarkable transfer efficiency of 84%, it optimizes energy usage for enhanced performance. Safety is paramount, and this module is fortified with comprehensive protections against over current, short circuit, over voltage, under voltage, over temperature, and self-furbish scenarios. With input and output highly isolated at 3750VAC, it ensures unparalleled safety in operation. It meets rigorous industry standards including IEC62368/UL62368/EN62368, ensuring compliance and reliability in every aspect.

Common specifications	
Short circuit protection	Self-recovery - Output Switch-off - Hiccup
Over load protection	Input 85~265VAC - ≥120% Po - Hiccup
Switching frequency	50 KHz (min.) 55 KHz (typ.) 60 KHz (max.)
Operating temperature	-25°C - +75°C (Free air convention)
Storage temperature	-40°C - +105°C
Relative humidity	10~90% RH
Remote control terminal	Not available
Safety standard	EN55032, EN61000, UL62368
Vibration	10-55HZ,10G,30Min, along X,Y,Z
Class of case material	UL94 V-0
MTBF (MIL-HDBK-217F@25°C)	2 x 10 5 Hours

Input specifications							
Item	Operating condition	Min	Тур	Max	Units		
Input voltage range	e range AC input DC input		220 310	265 380	VAC VDC		
Input frequency range		47	50	63	Hz		
Input current	115VAC~47Hz 230VAC~50Hz		149 73.0	230 100	mA		
Input Inrush Current	110VAC~47Hz 230VAC~50Hz			10 20	А		
Recommended external Input fuse	2A~250Vac slow fusing, block form						

_			
FV	an	nn	יםו
	ш	пр	u.

5AC1D_05S3.6

5 = 5Watt; AC = AC-DC; 1D = Din Rail; 05 = 5Vout;

S = Single output; 3.6 = 3.6kVAC isolation

Output specificati	ons				
Item	Operating condition	Min	Тур	Max	Units
Voltage accuracy	Any Load, full voltage range Vo1			±3.0	%
Linear regulation	Nominal Load, full voltage range - Vo1			±1.0	%
Load regulation	20% ~ 100% nominal load Vo1			±1.5	%
Ripple & noise* (20MHz BM full load)	Vo≤5.0V, ≤80mVp-p Other ≤120mVp-p				
Turn-on delay time	Nominal input voltage		800		mS
Output power-off holding time	Nominal input voltage		30		mS
Temperature drift coefficient				±0.03	%/°C

Note: *Ripple & Noise tested under twisted-pair method (See Ripple & Noise Test in the back)

Isolation specifications								
Item	Operating Conditions Min Typ Max Unit							
Isolation voltage	Input to Output 3600VAC ≤ 3.0mA/1min;							
Insulation resistance	Input and Output≥100MΩ(test voltage as DC500V)							

- 1. The product should be used under the specification range, otherwise it will cause permanent damage to it.
- 2. Product's input terminal should connect to fuse;
- If the product worked beyond the load range, we cannot ensure that the performance of product is in accordance with all the indexes in this manual:
- 4. Unless otherwise specified, data in this datasheet should be tested under conditions of Ta = 25°C, humidity <75% when inputting nominal voltage and outputting rated load(pure resistance load);
- All index testing methods in this datasheet are based on our company's corporate standards
- The performance indexes of the product models listed in this manual are as above, but some indexes of non-standard model products will exceed the abovementioned requirements, and please directly contact our technician for specific information;
- 7. We can provide customized product service;
- 8. The product specification may be changed at any time without prior notice.

5AC1D 3.6 series

5W - AC-DC converter

EMC spe	cifications			
EMC	EMI	CE	CISPR22/EN55032/EN55024	CLASS B (See Photo 1 for recommended circuit)
EMC	EMI	RE	CISPR22/EN55032/EN55024	CLASS B (See Photo 1 for recommended circuit)
EMC	EMS	RS	IEC/EN61000-4-3 10V/m	Perf.Criteria B (See Photo 1 for recommended circuit)
EMC	EMS	CS	IEC/EN61000-4-6 3Vr.m.s	Perf.Criteria B(See Photo 1 for recommended circuit)
EMC	EMS	ESD	IEC/EN61000-4-2 Contact ±4KV	Air ±8KV (See Photo 1 for recommended circuit)
EMC	EMS	Surge	IEC/EN61000-4-5 ±1KV	Perf.Criteria B(See Photo 1 for recommended circuit)
EMC	EMS	EFT	IEC/EN61000-4-4 ±2KV	Perf.Criteria B(See Photo 1 for recommended circuit)
EMC	EMS	Voltage dips, short interruptions and voltage variations immunity	IEC/EN61000-4-11 0%~70%	Perf.Criteria B

Product Selection Guide

Approval	Model	Input Voltage Range	Output Voltage Vo1(V)	Output Current Io1(mA)	Max. Capacitive Load (uF)	Ripple & Noise 20MHz (Max)	Efficiency@ Full Load, Nominal Input Voltage Typ. (%)
	5AC1D_03S3.6	85V-265VAC / 120-380VDC	3.3	1818	2000	80	71
	5AC1D_05S3.6	85V-265VAC / 120-380VDC	5.0	1200	1500	80	75
	5AC1D_09S3.6	85V-265VAC / 120-380VDC	9.0	667	1000	120	78
	5AC1D_12S3.6	85V-265VAC / 120-380VDC	12.0	500	680	120	80
	5AC1D_15S3.6	85V-265VAC / 120-380VDC	15.0	400	470	120	82
	5AC1D_16S3.6	85V-265VAC / 120-380VDC	16.5	360	470	120	82
	5AC1D_24S3.6	85V-265VAC / 120-380VDC	24.0	250	300	120	84

Note:

- 1: The typical value of output efficiency is based on full load and burn-in after half an hour.
 2: The fluctuation range of full load efficiency at table(%,TYP) is ±2%, full load efficiency = total output power/module's input power.
 3: Ripple & noise is tested by twisted pair method, for details please see (ripple & noise test) at back.

Product characteristic curve

- 1: Input voltage should be derated based on input voltage derating curve when it is 85~100VAC/240~265VAC/120~140VDC/ 340~380VDC.
- 2: Our product is suitable to use under natural air cooling environment, if use it under closed condition, please contact with us

Dimensions and recommended layout

Pin	1	2	3	4	5	6	7
Single	AC(L)	AC(N)	NC	+Vo	NP	-Vo	NC

Note: Printed board vertical view Grid 2.54[0.1inch] Unit:mm [inch] Pin tolerance: ±0.10mm General tolerance: ±0.25

Ripple & noise test: (twisted pair method 20MHz bandwidth)

Twisted pair method (20MHz bandwidth)

Test Method:

- 1. Connect the twisted pair, set the oscilloscope bandwidth to 20MHz, use a 100M bandwidth probe, and terminate with a 0.1uF polypropylene capacitor and a 10uF high-frequency low-resistance electrolytic capacitor in parallel. Configure the oscilloscope to sample mode.
- 2. Connect the input terminal to the power supply and the output terminal to the electronic load using a jig plate. Use a 30cm (± 2 cm) sampling line, and select the power line from appropriately insulated wires of the corresponding diameter according to the output current flow.

Typical application circuit

Photo 1

Note:

- 1. FUSE, suggest 2A~250VAC slow fusing, block form;
- 2. MOV is voltage dependent resistor, suggest model 14D561K;
- 3. CX1 is X capacitor, suggest model 0.1uF/275Vac;
- ${\it 4. \ LCM is common mode inductor, suggest value 30mH;}\\$
- 5. C1 choose high frequency low impedance electrolytic capacitor, the capacitance value less than capacitive load. Withstand voltage is 1.5 times more than output voltage;
- 6. C2 choose 0.1uF ceramic chip capacitor, withstand voltage is 1.5 times more than output voltage;
- 7. TVS1 is TVS tube; 5V output suggest to use: SMBJ7.0A, 9V output suggest to use: SMBJ12.0A, 12V output suggest to use:SMBJ20A, 15V output suggest to use: SMBJ20.0A, 24V output suggest to use: SMBJ64A.