

Figure 1. Physical Photo of AM01HV12VP2KV1MAP

FEATURES

- Low Power Consumption
- High Efficiency
- High Stability
- Output current and voltage monitors
- Small Output Ripple, Time Drift, and Temperature Drift
- Overload and Short Circuit Protection
- Continuous Linear Adjustment for Output Voltage
- Metal Enclosure for Zero EMIS
- Easy Control and Installation
- Customizable

APPLICATIONS

AM01HV12VP2KV1MAP is a high stability high voltage power supply, which is widely used in scientific research and other fields including:

- Ideal for photomultiplier tube
- Optical measurement
- Light control technology, detectors
- Ion beam implantation
- Capacitor charging

- Electron beam welding
- Nuclear physics
- Withstand voltage test
- Medical equipment
- Precision instruments

DESCRIPTION

AM01HV12VP2KV1MAP is a combination of switching step-up technology and linear regulation, which converts the low input voltage into a stable high output voltage. It comes with output short-circuit protection and a wide range of output voltage adjustments. This high voltage power supply also features ultra-small size, light weight, moisture proof, shockproof, metal enclosure, and zero EMIs.

SAFETY PRECAUTIONS

The internal protection circuit is provided in the high voltage power supply, but the high voltage short circuit shall be avoided.

Make sure the circuit is insulated perfectly, especially between the high voltage output and the surroundings so as to avoid electronic shock.

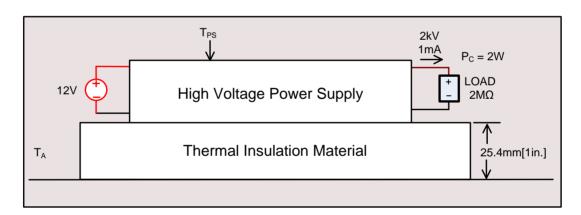
SPECIFICATIONS

Table 1. Characteristics. $T_A = 25$ °C, unless otherwise noted

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit/Note
Input Power Voltage	V _{VPS}		11	12	13	V
Input Power Quiescent Current	I _{VPS_QC}	Ivout = 0mA	40	50	60	mA
Input Power Current at Full Load	Ivps_fl	I _{VOUT} = 1.0mA	200	250	300	mA
Input Power Current at Shutdown	Ivps_shdn	T _A = -10°C ~ 55°C		18		mA
Power Supply Rejection Ratio	PSRR (1)	$V_{VPS} = 11V \sim 13V$ $V_{CTRL} = V_{5VR} = 5V$ $V_{VOUT} = 5kV$ $I_{VOUT} = 1.0mA$		TBD		dB
Modulation Voltage Range Frequency on CTRL	fctrl		0		12	Hz
Chutdown Dort Current	I _{SDNL}	V _{SDNL} < 0.8V	-5		-4.2	μΑ
Shutdown Port Current	Isdnh	1.2V < V _{SDNL} < 5V	0		3.8	μΑ
Shutdown Voltage Logic Low	V _{SDNL}		0		0.8	V
Shutdown Voltage Logic High	Vsdnh		1.2		5	V
Output Voltage	V_{VOUT}	I _{VOUT} = 0 ~ 1.0mA	0		2000	V
Output Current Range	Ivoutmax	V _{VPS} = 11V ~ 13V	0		1.0	mA
Reference Voltage Output Range	V _{5VR}	$T_A = -10^{\circ}\text{C} \sim 55^{\circ}\text{C}$ $I_{5VR} \leq 5\text{mA}$	4.95	5	5.05	V
Output Load Range			2		∞	МΩ
Output Voltage Ripple	Vvout_rp	Bandwidth = 1MHz $R_{\text{LOAD}} = 2 \text{M}\Omega$	≤1		V _{P-P}	
Output Voltage Ripple Frequency	f _{VOUT_RP}		TBD			Hz
Output Voltage Temperature Coefficient	TCV _{VOUT} (2)	$V_{VPS} = 12V$ $V_{CTRL} = V_{5VR} = 5V$ $V_{VOUT} = 2kV$ $I_{VOUT} = 1mA$ $T_A = -10^{\circ}C \sim 55^{\circ}C$		≤0.01		%/°C
Output Voltage Range v.s. Temperature	Vvоuт(T)	$V_{VPS} = 12V$ $V_{CTRL} = V_{5VR} = 5V$ $V_{VOUT} = 2kV$ $I_{VOUT} = 1mA$ $T_A = -10^{\circ}C \sim 55^{\circ}C$	0.99Vvоит	Vvouт	1.01Vvouт	V

							1
Output Voltage Drift	Short Term Drift	$\frac{\left \Delta V_{VOUT}/V_{VOUT}\right }{\Delta t \text{ (h)}}$	$V_{VPS} = 12V$ $V_{CTRL} = V_{5VR} = 5V$ $V_{VOUT} = 2kV$		≤0.01		%/h
			Ivout = 1mA				
Culput Voltage Dilit			$T_A = -10^{\circ}C \sim 55^{\circ}C$				
	Long Term Drift	$\Delta V_{VOUT}/V_{VOUT}$	After 30 min.		≤0.05		%/d
		Δt (d)	warm-up				
			$V_{VOUT}(t_1) = 200V$				
			$V_{VOUT}(t_2) = 1800V$		30		ms
			No-Load				5
Output Voltage	Rise Time	t _r	V _{VOUT} (t ₁) = 200V				
			$V_{VOUT}(t_2) = 1800V$		TBD		ms
			$R_{Load} = 2M\Omega$				
			V _{VOUT} (t ₂) = 1800V				
			$V_{VOUT}(t_3) = 200V$		100		ms
		,	No-Load				
Output Voltage	e Fall Time	t _f	V _{VOUT} (t ₂) = 1800V				
			$V_{VOUT}(t_3) = 200V$		TBD		ms
			$R_{Load} = 2M\Omega$				
Monitor Vo	oltage	V _{MON}	V _{OUT} = 0 ~ 2kV	0		2	V
Monitor C	urrent	I _{MON}	louт = 0 ~ 1.0mA	0		2	V
Mean Time Betv	veen Failure	MTBF			TBD		h
Instantaneous Short	Circuit Current at	Ivout_sc			≤500		mA
the Out	put	IVOUI_SC			≥500		IIIA
Lood Bogs	ulation	$\Delta V_{VOUT} / V_{VOUT}$	$V_{VOUT} = 5kV$		≤0.01		%/mA
Load Regu	ulation	ΔΙνουτ	I _{VOUT} = 1mA		≥0.01		70/111A
			V _{VPS} = 12V				
Full Load Ef	ficiency	η ⁽³⁾	$V_{VOUT} = 5kV$		≥80		%
			I _{VOUT} = 1mA				
Operating Temperature Range		T _{opr}		0		55	°C
Storage Temperature Range		T _{stg}		-40		85	°C
Thermal resistance housing-ambient		Ө _{НА} ⁽⁴⁾	V _{VPS} = 12V				
			$V_{\text{CTRL}} = V_{\text{5VR}} = 5V$		7.5		°C/M
			$V_{VOUT} = 5kV$		(.5		°C/W
			I _{VOUT} = 1mA				
External Dimensions				50×35×20			mm
				1.97	7×1.38×0).79	inch

Weight		30	g
			0.07
			1.06

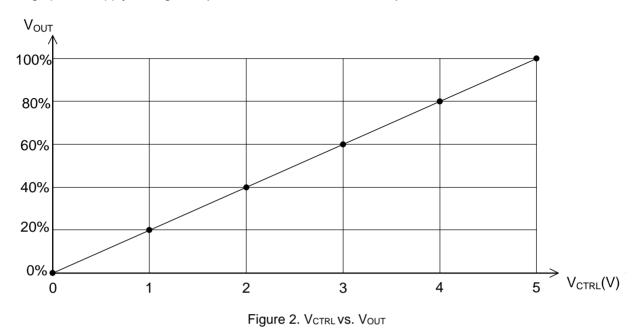

Note 1: PSRR =
$$20log_{10} \frac{\Delta V_{VOUT}/V_{VOUT}}{\Delta V_{VPS}/V_{VPS}}$$
 (dB)

$$\Delta V_{\text{VOUT}} = V_{\text{VOUT}}$$
 (VVPS = 12.5V) - VVOUT (VVPS = 11.5V), VVOUT = VVOUT (VVPS = 12V) $\Delta V_{\text{VPS}} = 12.5 \text{V} - 11.5 \text{V}$, VVPS = 12V

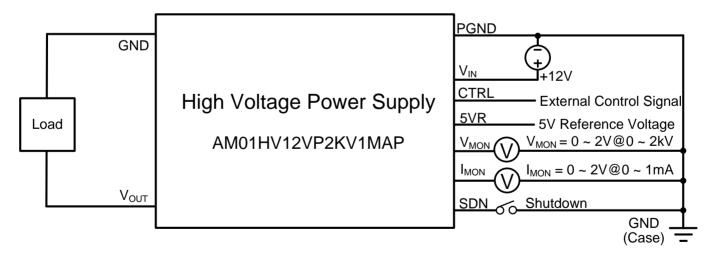
Note 2: TCV_{VOUT} =
$$\frac{\left|\Delta V_{VOUT}\right|}{V_{VOUT} \times \Delta T}$$

Note 3:
$$\eta = \frac{V_{VOUT} \times I_{VOUT}}{V_{VPS} \times I_{VPS}}$$

Note 4:



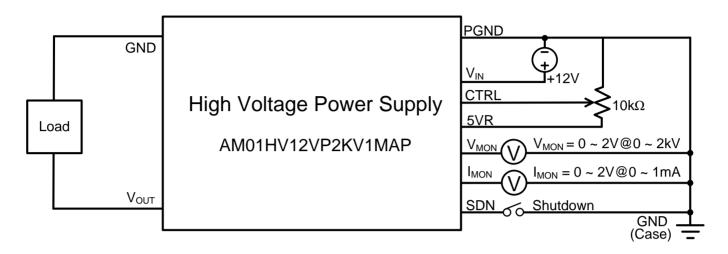
$$T_{PS} = 29^{\circ}C$$
, $T_{A} = 14^{\circ}C$, $T_{r} = T_{PS} - T_{A} = 15^{\circ}C$,


$$P_C = P_{VOUT} - P_{VPS} = 2W$$
, $\theta_{HA} = T_r/P_C = 15^{\circ}C/2W = 7.5^{\circ}C/W$.

TESTING DATA

High voltage power supply testing data (Test condition: the load is 2 $M\Omega$)

THE CONNECTION DIAGRAM OF MODULE'S PERIPHERAL CIRCUIT


*5VR: 5V reference voltage can only be used as the power supply for the potentiometer, not for any other parts.

*SDN: Shutdown Logic Low SDN < 0.8V or 0V on the SDN pin will turn off the high voltage output.

Shutdown Logic High SDN > 1.2V or left unconnected will turn on the high voltage output.

*The PGND and GND are connected inside with the case and should be well grounded.

Figure 3. Controlled by External Source

*5VR: 5V reference voltage can only be used as the power supply for the potentiometer, not for any other parts.

*SDN: Shutdown Logic Low SDN < 0.8V or 0V on the SDN pin will turn off the high voltage output.

Shutdown Logic High SDN > 1.2V or left unconnected will turn on the high voltage output.

*The PGND and GND are connected inside with the case and should be well grounded.

Figure 4. Controlled by Potentiometer

NAMING INSTRUCTIONS

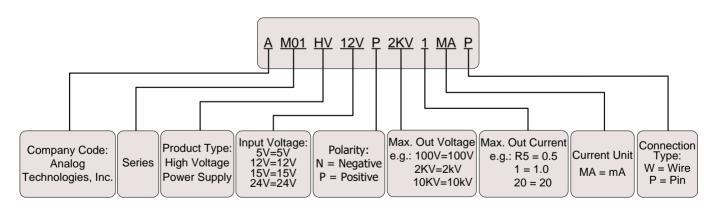


Figure 5. Naming Rules of AM01HV12VP2KV1MAP

I. Pin layout

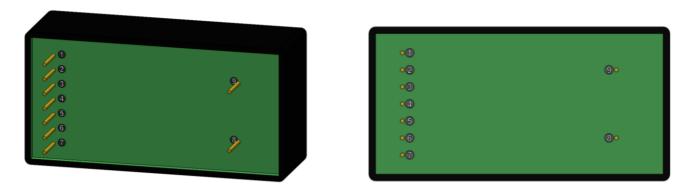


Figure 6. Pin Layout for AM01HV12VP2KV1MAP

II. Dimension of AM01HV12VP2KV1MAP.

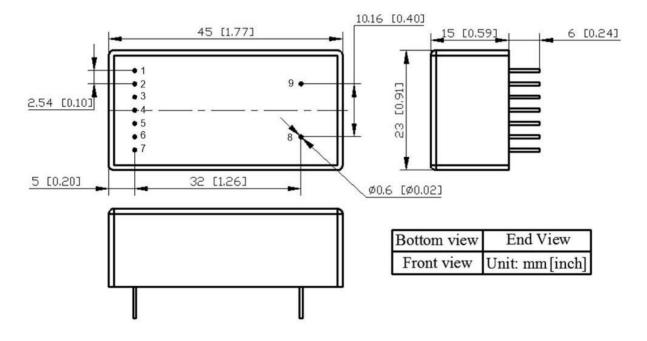


Figure 7. Dimensions for AM01HV12VP2KV1MAP

Table 2. Pin Names, Functions and Specifications.

No.	Name	Туре	Description	Min.	Тур.	Max.
1	PGND	power signals	Ground electrode		0V	
2	VIN	Power input	Input voltage		12V	
3	CTRL	Analog input	Regulation	0V		5V
4	5VR	Analog output	Reference voltage		5V	
5	V_{MON}	Analog output	Monitor Voltage	0V		5V
6	I _{MON}	Analog output	Monitor Current	0V		10mA
7	SDN	Digital input	Shutdown logic low	0V		0.8V
	SDIN	Digital input	Shutdown logic high	1.2V		5V
8	V _{OUT}	Power output	Output high voltage 0V			2kV
9	GND	power signals	Ground electrode		0V	

ORDERING INFORMATION

Quantity	1~9pcs	10~49pcs	50~99pcs	≥100pcs
AM01HV12VP2KV1MAP	\$139	\$129	\$119	\$109

NOTE

- ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except
 for those being damaged by excessive abuse. Products found not meeting the specifications within one year
 from the date of sale can be exchanged free of charge.
- 2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.
- 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
- 4. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.

High Voltage Power Supply

AM01HV12VP2KV1MAP

- 5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI's publication of information regarding any third party's products or services does not constitute ATI's approval, warranty or endorsement thereof.
- 6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.