
Flashing and Booting the Target Device
Before You Begin

Basic Flash Script Usage

Basic Flashing Procedures

Flash Script Usage

Flashing to a USB Drive

Flashing to an NVMe Drive

Flashing to an SD Card

Flashing to an External Storage Device

Flashing a Specific Partition

Flashing for NFS as Root

Flashing with initrd

Flashing from NFS

Flashing to Multiple Jetson Devices

Flashing for Network Boot

Increasing Internal Memory Partition for Root File System

Determining the Success of a Driver Update

Reconfiguring a Jetson Device with oem-config

Modifying Jetson RAM Disk

Use the flash.sh helper script to flash the board with the bootloader and kernel, and optionally, flash the root file
system to internal or an external storage device.

Use the script l4t_initrd_flash.sh to flash internal or external media connected to a Jetson device. This script
uses the recovery initial ramdisk to do the flashing, and can flash external and internal media with the same
procedure. Since this script uses kernel for flashing, it is generally faster than flash.sh. See the section Flashing with
initrd for more details.

Before You Begin
The following directories must be present:

• bootloader: Bootloader plus flashing tools, such as TegraFlash, CFG, BCT, etc.

• kernel: A kernel Image /vmlinux.uimg, DTB files, and kernel modules

• rootfs: The root file system that you download

This directory starts empty. You populate it with the sample file system.

• nv_tegra: User space binaries and sample applications

Additionally, before running these commands, you must have the USB cable connected to the recovery port.

Basic Flash Script Usage

Locate the most up-to-date usage information by running flash.sh –h (using the flash.sh script included in the
release). The basic usage is as follows.

$ sudo ./flash.sh [options] <board> <rootdev>

Where:

• options is one or more command line switches. All switches are optional. Switches are described in Flash Script
Usage.

• <board> specifies the configuration to be applied to the device to be flashed. Values are listed in the table of
device names in the topic Quick Start. flash.sh gets the configuration from a configuration file named
<board>.conf.

• <rootdev> specifies the type of device that is to be flashed. Use the value mmcblk0p1 to flash a local storage
device (eMMC or SD card, depending on platform), as distinguished from NFS server, for example.

Basic Flashing Procedures
This section describes some common procedures for flashing one or more target devices.

To flash the target device
1. Put the target device into reset/recovery mode.

1. Power on the carrier board and hold the RECOVERY button.

2. Press the RESET button.

2. Run the flash.sh script that is in the top-level directory of this release. The script must be supplied with the
target board (e.g. jetson-xavier) for the root file system:

$ sudo ./flash.sh <board> <rootdev>

Where:

• <board> specifies the configuration of the target device, as described in the table of device names in the
topic Quick Start

• <rootdev> specifies the device on which the root file system is located, as described in Basic Flash Script
Usage

For a root file system, execute the script like this:

$ sudo ./flash.sh <board> mmcblk0p1

To flash the target device to mount a rootfs specified by UUID
• For an internal storage device (e.g. eMMC or an SD card), enter this command:

$ sudo ./flash.sh <board> internal

This command stores the UUID used for the root filesystem partition in the file bootloader/l4t-rootfs-
uuid.txt. You may specify your own UUID by writing the UUID to this file before executing the command above.

• For an external stage device (e.g. an NVMe or USB device), enter this command:

$ sudo ./flash.sh <board> external

This command stores the UUID used for the root filesystem partition in the file bootloader/l4t-rootfs-
uuid.txt_ext. You may specify your own UUID by writing the UUID to this file before executing the command
above.

To clone a Jetson device and flash
1. Copy system.img from the filesystem partition you want to flash from. Enter this command:

$ sudo ./flash.sh -r -k APP -G <clone> <board> mmcblk0p1

Where:

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

• <clone> determines the names of the copies.

• <board> specifies the configuration of the target device.

This step creates two copies of <clone> in the <top> directory: a sparsed image (smaller than the original)
named <clone>, and an exact copy named <clone>.raw.

For example, if <clone> is original.img, flash.sh creates a sparsed image named original.img and an
exact copy named original.img.raw.

3. Copy <clone>.img to the <L4T>/bootloader/system.img directory. Enter this command:

$ sudo cp <clone>.img bootloader/system.img

4. Flash the image to the target board.

• If the target board has already been flashed, reflash the clone image to the APP partition. Enter this command:
$ sudo ./flash.sh -r -k APP <board> mmcblk0p1

• If the target board has never been flashed, flash all of the board’s partitions. Enter this command:
$ sudo ./flash.sh -r <board> mmcblk0p1

To RCM boot to NFS
Applies to: Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series only

Note To create a bootable NFS root filesystem, you must first:

• Perform the process described in the section Step 1: Set Up the Root File System in the
topic Setting Up Your File System

• Perform the process described in the section Configuring NFS Root on the Linux Host in
the topic BSP Customization.

1. Put the device into reset/recovery mode.

• Power on the carrier board and hold the RECOVERY button.

• Then press the RESET button.

2. Execute the command:

$ sudo./flash.sh -N <ip_addr>:<root_path> --rcm-boot <board> eth0

Where:

• <ip_addr> is the IP address of the host system

• <root_path> is the path to the NFS rootfs

• <board> is the configuration of the target device as specified in the table of device names of the topic Quick
Start

Flash Script Usage
This section complements Basic Flash Script Usage by providing detailed information about flash.sh command line
options and other aspects of flash.sh usage.

Command line option Description

-b <bctfile> Deprecated. Pathname of a boot control table configuration file.

-c <cfgfile> Pathname of a flash partition table configuration file.

-d <dtbfile> Pathname of a device tree file.

-e <emmc size> Deprecated. Target device's eMMC memory size. Applies only to target devices
that use eMMC.

-f <flashapp> Name of the flash application to be used. Flash applications are stored in the

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/rootfs_custom.html#wwpID0E0RG0HA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/rootfs_custom.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/getting_started.html#wwpID0E0CC0HA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/getting_started.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

bootloader directory. The default flash application is
bootloader/tegraflash.py.

-h Prints descriptions of the command line syntax and command line options.

-k <partition_id> Partition name or number specified in flash.xml or flash.cfg.

-m <mts_preboot> Name of the MTS preboot file to be used, such as mts_preboot.

-n <nfs_args> Static NFS network assignments: <Client_IP>:<Server_IP>:<Gateway_IP>:
<Netmask>.

-o <odmdata> ODM data.

-p <bp_size> Total eMMC hardware boot partition size.

-r Skips building system.img; reuse the existing one.

-s <PKC_ key_ file> Pathname of a file containing the PKC key used for signing and building
bl_update_payload. (Obsolete)

-t <tegraboot> Pathname of a tegraboot binary such as nvtboot.bin.

-u <PKC_key_file> Pathname of a file containing the PKC key used for an ODM fused board.

-v <SBK_key_file> Pathname of a file containing the Secure Boot Key (SBK) used for an ODM fused
board.

-w <wb0boot> Pathname of a warm boot binary such as nvtbootwb0.bin.

-x <tegraid> Processor chip ID. The default value is:

• NVIDIA® Jetson Nano™ devices and NVIDIA® Jetson™ TX1: 0x21

• NVIDIA® Jetson Xavier™ NX and NVIDIA® Jetson AGX Xavier™ series: 0x19

• Jetson TX2 series: 0x18

-y <fusetype> Deprecated. PKC if Secureboot is used, or NS otherwise.

-z <sn> Serial number of the target board.

-B <boardid> Board ID.

-C <args> Kernel command line arguments. If this option is specified, it overrides the
default values defined for flash.sh. If two or more arguments are specified,
they must be enclosed in quotation marks and separated by spaces.
Kernel command line arguments are documented in the file kernel-
4.9/Documentation/kernel-parameters.txt.
In the case of NFS booting, use this option to set NFS booting related arguments if
the -I option is omitted.

-F <flasher> Pathname of a flash server such as cboot.bin.

-G <file_name> Reads the boot partition and saves the image to the specified file.

-I <initrd> Pathname of the initrd file. The default value is null.

-K <kernel> Pathname of a kernel image file such as zImage or Image.

-L <bootloader> Pathname of a Bootloader such as cboot.bin or u-boot-dtb.bin.

-M <mts boot> Pathname of an MTS boot file such as mts_si.

-N <nfsroot> NFS root address, such as <my_IP_address>:/my/exported/nfs/rootfs.

-P <ppt_end_plus1> Deprecated. End of the PPT plus 1; primary GPT start address + size of PPT + 1.

-R <rootfs_dir> Pathname of the sample rootfs directory.

-S <size> Size of the rootfs in bytes. Valid only for an internal rootdev. KB/MB/GB suffixes
represent units of 1000, 10002, and 10003. KiB/MiB/GiB suffixes represents of
1024, 10242, and 10243. For example, 2GiB represents 2×1024×1024×1024 bytes.

--bup Generates Bootloader update payload (BUP).

--clean-up Cleans up the BUP buffer when ‑‑multi-spec is enabled.

--multi-spec Enables support for building a multi-spec BUP.

--no-flash Performs all steps except physically flashing the board. The script creates a
system.img file.

--no-systemimg Prevents creation or re-creation of system.img.

--usb-instance <id> USB instance to connect to; <id> is an integer ID (e.g. 0, 1), a bus/dev (e.g.
003/091), or a USB port path (e.g. 3-14). The last is the recommended form.

--user_key
<user_key_file>

Pathname of a file containing a user key which may be used to encrypt and
decrypt kernel, kernel-dtb, and initrd binary images. If ‑‑user_key is specified,
then the ‑v option must also be specified.

Flashing to a USB Drive
Applies to: Jetson Xavier NX, Jetson Nano devices, Jetson AGX Xavier series, and Jetson TX1 only

Jetson Xavier NX, Jetson Nano devices, Jetson AGX Xavier series, and Jetson TX1 can be booted from a USB device with
mass storage class and bulk only protocol, such as a flash drive. Hot plugging is not supported; the flash drive must be
attached before the device is booted.You can manually set up a flash drive for booting as explained in the section To
set up a flash drive manually for booting.

For Jetson Xavier NX and Jetson AGX Xavier series, NVIDIA provides a way to simplify flashing to a USB drive that is
connected to a Jetson. For details, see To set up a USB drive for booting using flash with initrd.

Note Jetson AGX Xavier series devices use boot firmware that is stored only on internal eMMC
memory. Consequently this type of device cannot boot from USB or NVMe SSD until its
internal eMMC has been flashed.

To set up a flash drive manually for booting
1. For this method only, confirm that the device can boot successfully from eMMC. If it cannot, correct the problem

by flashing to eMMC first.

2. Connect the flash drive to the host computer.

3. Check the flash drive’s device name (e.g. /dev/sdb):

$ sudo lsblk -p -d | grep sd

4. Create a new GPT:

$ sudo parted /dev/<sdx> mklabel gpt

Where <sdx> is the device name that your host computer assigned to the flash drive.

For example, if the host computer assigns the flash drive device name sdb, the command is:

$ sudo parted /dev/sdb mklabel gpt

5. Add the APP partition:

$ sudo parted /dev/<sdx> mkpart APP 0GB <size>

Where <size> is the size of the partition. It must be at least 16 GB. It may be larger if the flash drive has enough
space.

For example, if <sdx> is sdb and the partition is to contain 16 GB, enter:

$ sudo parted /dev/sdb mkpart APP 0GB 16GB

The device name of the APP partition will be /dev/<sdx>1.

5. Format APP as an ext4 partition and mount it.

$ sudo mkfs.ext4 /dev/<sdx>1
$ sudo mount /dev/<sdx>1 /mnt

You may format APP as ext2 or ext3, but ext4 is strongly recommended because it is faster, more compact, and
more reliable.

6. Connect the Jetson device to a host computer and put it into recovery mode, then enter the following commands
to generate the rootfs without flashing the device:

$ cd Linux_for_Tegra/
$ sudo BOOTDEV=sda1 ./flash.sh --no-flash <board> sda1
$ sudo mkdir tmp_system
$ sudo mount bootloader/system.img.raw ./tmp_system
$ sudo rsync -axHAWX --numeric-ids --info=progress2 --exclude=/proc ./tmp_system/
/mnt

Where sda1 is the device name that the Jetson device will assign to APP.

7. Unmount the flash drive and disconnect it from the host computer:

$ sudo umount /mnt
$ sudo umount ./tmp_system

8. Plug the flash drive into the target device and power it on or reboot it.

To prepare files to boot from a flash drive with Secureboot
When the Secureboot package is installed, the kernel file /boot/Image must be signed, and the signature file must be
saved as /boot/Image.sig.

If you use flash.sh to flash a device with Secureboot installed, the script automatically creates and stores the signature
file. If you create a signature file manually, you must also save it manually. For more information, see the section
Signing of Kernel and Kernel-DTB Binary Files in the topic Jetson Xavier NX and Jetson AGX Xavier Series Boot Flow.

To set up a USB drive for booting using flash with initrd
Applies to: Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series only

By flashing with initrd you can flash to an external USB device attached to Jetson Xavier NX, Jetson AGX Xavier series,
or Jetson TX2 series. For more information, see Flashing to an External Storage Device.

Flashing to an NVMe Drive
Jetson Xavier NX, Jetson Nano devices, Jetson AGX Xavier series, Jetson TX2 series, and Jetson TX1 devices can be
booted from an NVMe storage device. Hot-plugging is not supported; the NVMe drive must be attached before the
device is booted.

You can manually set up an NVMe drive for booting by following the steps in the section To set up an NVMe drive
manually for booting.

For Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series, NVIDIA provides a way to simplify flashing to an
NVMe drive that is connected to a Jetson device. For details, see To set up an NVMe drive for booting using flash with
initrd.

Note Jetson AGX Xavier series devices use boot firmware that is stored only on internal eMMC

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_xavier.html#wwpID0EBHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_xavier.html#

memory. Consequently this type of device cannot boot from USB or NVMe SSD until its
internal eMMC has been flashed.

To set up an NVMe drive manually for booting
1. For this method, confirm that the device can boot successfully from eMMC. If it cannot, correct the problem by

flashing to eMMC first.

2. Connect the NVMe drive to the host computer.

3. Check the NVMe drive’s device name (e.g. /dev/nvme0n1):

$ lsblk -d -p | grep nvme | cut -d\ -f 1

Note that there must be two spaces after the ‑d\.

4. Create a new GPT:

$ sudo parted /dev/<nvmeXn1> mklabel gpt

Where <nvmeXn1> is the device name that your host computer assigns to the NVMe drive.

For example, if the host computer assigns the NVMe drive device name nvme0n1, the command is:

$ sudo parted /dev/nvme0n1 mklabel gpt

5. Add the APP partition:

$ sudo parted /dev/<nvmeXn1> mkpart APP 0GB <size>

Where <size> is the size of the partition. It must be at least 16 GB. It may be larger if the NVMe drive has enough
space.

For example, if <nvmeXn1> is nvme0n1 and the partition is to contain 16 GB, enter:

$ sudo parted /dev/nvme0n1 mkpart APP 0GB 16GB

The device name of the APP partition is then /dev/<nvmeXn1>p1.

6. Format APP as an ext4 partition and mount it.

$ sudo mkfs.ext4 /dev/<nvmeXn1>p1
$ sudo mount /dev/<nvmeXn1>p1 /mnt

You may format APP as ext2 or ext3, but ext4 is strongly recommended because it is faster, more compact, and
more reliable.

7. Connect the Jetson device to a host computer and put it into recovery mode, then enter the following commands
to generate the rootfs without flashing the device:

$ cd Linux_for_Tegra/
$ sudo BOOTDEV=nvme0n1p1 ./flash.sh --no-flash <board> nvme0n1p1
$ sudo mkdir tmp_system
$ sudo mount bootloader/system.img.raw ./tmp_system
$ sudo rsync -axHAWX --numeric-ids --info=progress2 --exclude=/proc ./tmp_system/
/mnt

Where nvme0n1p1 is the device name that the Jetson device will assign to APP.

8. Unmount the NVMe drive and disconnect it from the host computer:

$ sudo umount /mnt
$ sudo umount ./tmp_system

9. Plug the NVMe drive into the target device and power on.

10. Set booting from NVMe drive in U-Boot environment:

• To test directly, enter run bootcmd_nvme0 at the U Boot prompt.

• To set NVMe to boot first with a plain boot command, change the U-Boot variable boot_targets to "nvme0
mmc1 mmc0 usb0 pxe dhcp", then enter the U-Boot command run boot.

• To make the change permanent, run saveenv in U-Boot after changing boot_targets but before booting

To prepare files to boot from an NVMe drive with Secureboot

See the section To prepare files to boot from a flash drive with Secureboot.

To set up an NVMe drive for booting using flash with initrd
Applies to: Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series only

By flashing with initrd you can flash to an external NVMe SSD attached to Jetson Xavier NX, Jetson AGX Xavier series, or
Jetson TX2 series. For more information, see Flashing to an External Storage Device.

Flashing to an SD Card
Applies to: Jetson Xavier NX and Jetson Nano development modules only

This section describes procedures for flashing and utilizing an SD card for a Jetson Xavier NX module (P3668-0000) or a
Jetson Nano development module (P3448-0000 or P3448-0003). These modules are used only as components of Jetson
developer kits.

Prerequisites
• Download Etcher for Linux. Etcher is the tool you will use to copy an image to an SD card. It is available at:

https://www.balena.io/etcher/

Download Etcher for Linux x64 (64-bit) (AppImage). Make the downloaded file executable.

Note NVIDIA recommends using Etcher to copy an image to an SD card because it is an easy and
foolproof method. If you prefer, you can also perform this operation with the Linux dd
command. If you use this method, you need not download Etcher.

To generate an image to be flashed to an SD card
Applies to: Jetson Xavier NX and Jetson Nano devices only

1. If you have not already done so, expand the archive linux_for_tegra.tbz2.

2. Go to the directory Linux_for_Tegra/tools.

3. Enter this command:

$./jetson-disk-image-creator.sh -o <blob_name> -b <board> -r <revision>

Where:

• <blob_name> is a filename; the script saves the raw image with this name.

• <board> specifies the type of Jetson device the SD card is to be flashed for. The value of <board> is specified
in the table Jetson Modules and Configurations in the topic Quick Start.

• <revision> is the revision number of the Jetson module to be used:

• 100 for original Jetson Nano revision A01

• 200 for original Jetson Nano revision A02

• 300 for original Jetson Nano revision B00 or B01

• Nothing for Jetson Nano 2GB or Jetson Xavier NX (do not use the ‑‑r option)

This command generates a raw image with partitions per the SPI-SD profile for a Jetson Xavier NX development
module, or per the Min-SPI profile for a Jetson Nano development module.

For example, to create a raw image file named sd-blob.img for use on a Jetson Nano development module revision
A01:

$./jetson-disk-image-creator.sh -o sd-blob.img -b jetson-nano-devkit -r 100

The jetson-disk-image-creator.sh script supports use of a modified rootfs. Thus, you can create an SD card
image with a specified rootfs directory:

https://www.balena.io/etcher/
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

$ ROOTFS_DIR=<MODIFIED_ROOTFS_PATH> ./jetson-disk-image-creator.sh -o <blob_name> -b
<board> -r <revision>

To flash the image to an SD card with Etcher
1. Insert the SD card into an SD card slot on your host system. If your system does not have an SD card slot, you may

use an external SD card reader.

2. Launch Etcher and select the SD blob image file created by the jetson-disk-image-creator.sh script.

3. Select the SD card to be flashed.

4. Click Flash to write the SD blob image to the SD card.

To flash the image to an SD card with dd
• Enter the command:

$ sudo dd if=<sd_blob_name> of=/dev/mmcblk<n> bs=1M oflag=direct

Where:

• <sd_blocb_name> is the name (with pathname, if necessary) of the blob image file created by the jetson-
disk-image-creator.sh script.

• <n> is the SD card block number detected by your Linux host, i.e. 0 or 1.

For example, to copy an image blob file named sd-blob.img from the working directory to SD card block number 1:

$ sudo dd if=sd-blob.img of=/dev/mmcblk1 bs=1M oflag=direct

To resize the root partition to fill available SD card space
The root partition is always created at the end of the boot device. This allows you to change its size without having to
move other partitions.

You change the size of the boot partition with the resize2fs tool, which is run by oem-config the first time a newly
copied image blob file is booted from an SD card.

When a freshly initialized SD card is first booted it runs oem-config, one of whose functions is to set the APP
partition’s size. It does the following things:

1. Moves the backup GPT header to the end of the disk

2. Deletes and re-creates the root partition

3. Informs the kernel and OS of the change in the partition table and root partition size

4. Resizes the filesystem on the root partition to fit the expected partition table and root partition size

Flashing to an External Storage Device
Changing Boot Order with CBoot

Changing Boot Order with U-Boot

Applies to: Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series only

The initrd flashing tool supports flashing to an external storage device. For an overview of this tool, see the section
Flashing with initrd.

To flash an external device, you must create an external partition layout. For information about this, see the section
External Storage Device Partition in Bootloader.

The devices that L4T supports as external storage devices are those which appear in the Linux filesystem as SCSI
devices (device name /dev/sd*) and NVMe devices (/dev/nvme*n*) in the Linux “dev” filesystem. NVIDIA provides
the necessary tools and instructions as part of the Linux BSP package; they may be found in the directory

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/part_config.html#wwp140137
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_setup.html#

Linux_for_Tegra/tools/kernel_flash. For more detailed instructions, see workflows 3, 4, and 5 in the file
README_initrd_flash.txt in that directory.

Changing Boot Order with CBoot
For devices that use CBoot to boot, you can change boot order in the CBoot environment after you have flashed the
device:

1. Interrupt CBoot while it is loading the boot configurations from extlinux.conf by pressing any key.

2. Enter these commands to change the boot order and verify the change:

$ setvar boot-order <dev1> <dev2> <dev3> ...
$ printvar boot-order

You may specify any number of <dev> parameters. The valid values for these parameters are:

• emmc

• nvme

• nvme:C<n> (where <n> is the device number)

• nvme:pcie@<addr>, net (where <addr> is the device’s PCIe address)

• sd

• usb

3. To reboot, enter boot.

Changing Boot Order with U-Boot
For devices that use U-Boot to boot, you can change boot order after you have flashed the device. Change the U-Boot
variable boot_targets to list the boot devices in priority order, then enter the U-Boot command run boot.

You may specify any number of <dev> parameters. The valid values for these parameters are:

• dhcp

• mmc0

• mmc1

• nvme0

• pxe

• usb0

Flashing a Specific Partition
You can flash a specific partition instead of flashing the whole device by using the command line option ‑k.

To flash a specific partition
• Enter the command:

$ sudo ./flash.sh -k <partition_name> [--image <image_name>] <board> <rootdev>

Where:

• <partition_name> is the name of the partition to be flashed. Possible values depend on the target device.
For details, see the section Default Partition Overview in the topic Bootloader.

• <image_name> is the name of the image file. If omitted, flash.sh chooses the image file that was used to
flash whole device.

• <board> is the configuration of the target device as specified in the section To flash Jetson developer kit
operating software in the topic Quick Start.

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/part_config.html#wwconnect_header
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_setup.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwconnect_header
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

• <rootdev> specifies the device on which the root file system is located, as described in Basic Flash Script
Usage.

Examples
To flash the kernel on dtb on Jetson Nano 2GB using the default file <L4T>/kernel/dtb/tegra210-p3448-0003-
p3542-0000.dtb:

$ sudo ./flash.sh -k DTB jetson-nano-2gb-devkit mmcblk0p1

To flash the kernel on Jetson AGX Xavier using the default file <L4T>/kernel/Image:

$ sudo ./flash.sh -k kernel jetson-xavier mmcblk0p1

To flash mb1 bct on Jetson AGX Xavier using a predefined list of configuration files:

$ sudo ./flash.sh -k MB1_BCT jetson-xavier mmcblk0p1

To flash CPU bootloader on Jetson TX2 by using a user-specified image file <user_path>/cboot.bin:

$ sudo ./flash.sh -k cpu-bootloader –-image <user_path>/cboot.bin jetson-tx2
mmcblk0p1

Notes on the “-k kernel” option
Since U-Boot is required for Jetson Nano devices and Jetson TX1, and is the default bootloader for Jetson TX2, the
image flashed to the kernel partition is actually a U-Boot image. U-Boot loads the Linux kernel from /boot/Image in
the root file system.

For this reason, you cannot update Linux kernel image using the ‑k kernel option. You may update /boot/Image by
either of these means:

• Modify /boot/extlinux/extlinux.conf to add a new boot entry.

Follow the instructions and example provided in /boot/extlinux/extlinux.conf. By this means you can
always use cp or scp to replace /boot/Image with a custom-built kernel and launch it with U-Boot.

• On T210 (Jetson Nano devices and Jetson TX1) devices only, connect the Jetson device’s recovery USB port to your
host. Enter this command at the U-Boot command prompt:

$ ums 0 mmc 1

This connects eMMC (or a Jetson Nano with SD card) to the host as a set of USB mass storage devices (each
partition as a device). You then can copy your custom kernel to /boot/Image directly.

Flashing for NFS as Root
You can flash the device to use a network file system (NFS) as the root filesystem.

Note To create a bootable NFS root filesystem, you must first:

• Perform the process described in the section Step 1: Set Up the Root File System in the
topic Setting Up Your File System

• Perform the process described in the section Configuring NFS Root on the Linux Host in
the topic BSP Customization.

To flash for a network file system as root filesystem
1. Put the device into Recovery Mode. Power the carrier board on; press and hold the RECOVERY button, then

press the RESET button.

2. Enter this command:
$ sudo ./flash.sh -N <ip_addr>:<root_path> <board> eth0

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/rootfs_custom.html#wwpID0E0RG0HA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/rootfs_custom.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/getting_started.html#wwpID0E0CC0HA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/getting_started.html#

Where:

• <ip_addr> is the IP address of the host system.

• <root_path> is the path to the NFS root filesystem.

• <board> is the configuration of the target device as specified in the table of device names in the topic Quick
Start.

This command flashes Bootloader and a filesystem image with a /boot directory only to use the network file
system at <ip_addr>:/<root_path> as the root filesystem at boot time.

Flashing with initrd
Applies to: Jetson Xavier NX and Jetson AGX Xavier series only

You can flash with initrd (initial RAM disk) to both internal media and external media connected to a Jetson device.
This procedure uses initrd and USB device mode. It requires that the Secureboot package be installed; see Installing the
Secureboot Package in the topic Secureboot.

Tools and instructions for flashing with initrd may be found in the directory /Linux_for_Tegra/ tools/
kernel_flash/. For more detailed information, see README_initrd_flash.txt in the same directory.

README_initrd_flash.txt contains examples several workflows that flash with initrd:

• Flashing internal storage devices

• Flashing external storage devices such as NVMe SSD and USB drives

• Enabling A/B rootfs on external storage devices

• Enabling disk encryptions on external storage devices

• Flashing individual partitions

• Flashing fused Jetson devices.

• Flashing a Massflash blob to normal and fused Jetson devices

• Generating separate images for external and internal storage devices, then flashing the combined images

Note Jetson AGX Xavier series devices use boot firmware that is stored only on internal eMMC
memory. Consequently this type of device cannot boot from USB or NVMe SSD until its
internal eMMC has been flashed.

Requirements
• Initrd flash requires a high-quality USB-C / micro-USB cable. A low-quality cable may make the flashing process

fail.

• The host uses NetworkManager, not some other network management application, to configure the network for
flashing.

• Automount must temporarily be disabled for the new external storage device during flashing. The tool uses USB
mass storage during flashing.

On most Debian-based distributions of Linux, you can accomplish this with the following command:

$ systemctl stop udisks2.service

• The host must have the following dependencies:

$ sudo apt install libxml2-utils simg2img network-manager abootimg sshpass device-
tree-compiler

To flash with initrd
1. Put the Jetson device in Recovery Mode.

2. Enter these commands on the host:

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_secure_boot.html#wwpID0E0CH0HA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_secure_boot.html#

$ cd Linux_for_Tegra
$ sudo ./tools/kernel_flash/l4t_initrd_flash.sh <board-name> <rootdev>

Where:

• <board-name> is the value of the environment variable BOARD for the target device. (See the table Jetson
Modules and Configurations in the topic Quick Start.)

• <rootdev> specifies the device on which the root file system is located, as described in Basic Flash Script
Usage.

Flashing from NFS
Applies to: Jetson Xavier NX and Jetson AGX Xavier series only

Note Flashing from NFS is deprecated. Use Flashing with initrd instead.

You can flash the whole device after you rcm-boot to NFS. NVIDIA provides the necessary tools and instructions as part
of the Linux BSP package, which may be found in the directory Linux_for_Tegra/tools/kernel_flash.

The following sections provide two basic procedures for using the tools. For more detailed information, see the file
README_nfs_flash.txt in the same directory.

To set up an NFS with flashing capability
1. Put the device in Recovery Mode.

2. Enter these commands to generate a flash package in your NFS root filesystem:

$ cd Linux_for_Tegra
$ # Put device in recovery mode
$ sudo ./tools/kernel_flash/l4t_create_images_for_kernel_flash.sh -N <IPaddr>:
<nfsroot> <board-name> <rootdev>

Where:

• <IPaddr>:<nfsroot> is the location of the NFS root to be used by the target to boot.

• <board-name> is the value of the environment variable BOARD for the target device. (See the table Jetson
Modules and Configurations in the topic Quick Start.)

• <rootdev> specifies the device on which the root file system is located, as described in Basic Flash Script
Usage.

The script l4t_create_images_for_kernel_flash.sh generates the flash package and stores it in a tarball
named nv_flash_from_nfs_image.tbz2 in the directory tools/kernel_flash. If the current host is providing
the NFS root filesystem, the script automatically puts the flash package into a folder named images_to_flash at the
root of that filesystem. Then it triggers the target to start RCM boot to NFS. If the target does not automatically RCM
boot to NFS, you can use the procedure To RCM Boot to NFS to boot manually.

If the host is not providing the NFS root filesystem, you must extract nv_flash_from_nfs_image.tbz2 into the NFS
root filesystem on its host. Then you must use the procedure To RCM Boot to NFS to RCM-boot to NFS manually.

The flash package may have multiple folders if you generate the flash package for more than one device. For example,
the flash package structure may be:

/images_to_flash
 jetson-agx-xavier-devkit
 jetson-xavier-nx-devkit-emmc
 jetson-xavier-nx-devkit

To flash the device from RCM boot to NFS
After the flash package is put in the NFS root filesystem and you RCM boot the target to NFS, you can use the device’s
command terminal to run this command on the target's console to flash the target device:

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwpID0EAAPNHA
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

$ sudo <flash>/images_to_flash/<board>/l4t_flash_from_kernel.sh

Where:

• <flash> is the location of the flash package

• <board> is the board name that was used to create the flash package

For more information about the use of l4t_flash_from_kernel.sh, see the README file
Linux_for_tegra/tools/kernel_flash/README_nfs_flash.txt.

Flashing to Multiple Jetson Devices
NVIDIA provides a tool and instructions for flashing Jetson devices efficiently in a factory environment. This tool is part
of the Linux BSP package and is available in the Linux_for_Tegra folder. Instructions for using the tool are included
in README_Massflash.txt, located in the same folder.

Flashing for Network Boot
Applies to: Jetson Nano devices only

Jetson Nano devices support network boot through the PXELINUX implementation of PXE protocol.

To flash a Jetson Nano device for PXE boot
1. Download, extract and get the build ready for applicable platform. For instructions, see the open source page How

do I install and run a TFTP server?

2. Copy the kernel and DTB to the server_args directory:

$ sudo cp Linux_for_tegra/kernel/Image /tftpboot/
$ sudo cp Linux_for_Tegra/kernel/dtb/tegra210-p3448-0002-p3449-0000-b00.dtb
/tftboot/

3. Create the configuration directory

$ sudo mkdir /tftpboot/pxelinux.cfg

4. Create a new version of default (a boot configuration file) in pxelinux.cfg/ that contains these entries:

PROMPT 0
TIMEOUT 30
DEFAULT primary
MENU TITLE PXELinux boot options
LABEL primary
 MENU LABEL primary kernel on TFTP
 LINUX Image
 FDT tegra210-p3448-0002-p3449-0000-b00.dtb
 APPEND ${cbootargs} booted-via-pxe=true

default is the last (lowest priority) of several configuration files that PXE searches for configuration parameters.
See Configuration filename in the wiki page PXELINUX for more information.

5. Restart the xinetd service (the TFTP server) again.

6. Set the value of serverip in U-Boot, then test the configuration:

• To test directly, enter run bootcmd_pxe at the U-Boot prompt.

• To test with a plain boot command, change boot_targets to pxe dhcp mmc1, then enter run boot.

Note You can use the dummy flag booted-via-pxe=true to confirm that the flags specified
in cbootargs are actually used. After you boot, check for this flag in the boot
configuration by inspecting the node /proc/device-tree/chosen/bootargs.

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server
https://wiki.syslinux.org/wiki/index.php?title=PXELINUX#Configuration_filename
https://wiki.syslinux.org/wiki/index.php?title=PXELINUX

Try PXE boot first, then DHCP, then SD-card. For example (at the U-Boot prompt):

pci enum; pci
setenv serverip <your-tftp-server-ip>
setenv autoload no
dhcp
run bootcmd_pxe

Increasing Internal Memory Partition for Root File System
The suggested rootfs partition size for Jetson AGX Xavier is 15 gigabytes (GB). It is specified by default in the
<board>.conf file used by the flash.sh script.

Use the -S <size-in-bytes> argument to flash.sh to change the partition size.

To flash for a larger partition
• Execute the following command:

$ sudo ./flash.sh -S <size> <board> <rootdev>

Where:

• <size> is the desired size for the partition, such as 8589934592 (or 8 GiB) for 8 GB, if you want to decrease
the size of the partition.

• <board> is the configuration of the target device as specified in the section To flash Jetson developer kit
operating software in the topic Quick Start

• <rootdev> specifies the device on which the root file system is located, as described in Basic Flash Script
Usage.

Determining the Success of a Driver Update
After updating drivers on a target board, verify that the update completed successfully. You can determine the success
or failure of a driver update by using the following commands.

To determine the success of a driver update
• Execute the following command on a booted target device:

$ sha1sum –c /etc/nv_tegra_release

If the driver update succeeded, the output displays the word OK after the file name. A typical success message looks
like this:

/usr/lib/xorg/modules/drivers/nvidia_drv.so: OK

The driver update fails if the file is missing. A typical error message looks like this:

sha1sum: /usr/lib/xorg/modules/drivers/nvidia_drv.so: No such file or directory
/usr/lib/xorg/modules/drivers/nvidia_drv.so: FAILED open or read

The driver update also fails if the new file is different from the existing file, producing an error such as:

/usr/lib/xorg/modules/drivers/nvidia_drv.so: FAILED

Reconfiguring a Jetson Device with oem-config
About Communication Through the Debugging Port

Headless Mode Flow in oem-config

Skipping oem-config

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwconnect_header
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

A target device that is flashed by SDK Manager runs the oem-config tool automatically the first time it boots after it
is flashed. You can use this tool to change some parts of the device’s configuration.

The oem-config tool is useful for custom configuring production devices. In a typical use case, you flash a default
configuration and clone it to many production devices. The purchaser of each device can use oem-config to set their
own username and password, language, time zone, and so on.

On a headed target device (one equipped with a display), oem-config runs as a GUI application. On a headless target
device (one without a display), it runs as a character interface application.

After the target device runs oem-config on first boot, it disables the tool so that it will not run on subsequent boots.
If you install your own package and flash the target device manually (outside SDK Manager), you must re-enable oem-
config manually if you want it to run on the first subsequent boot. Again, the target device disables oem-config
after running it once.

To re-enable oem-config manually on a flash drive
1. Select a source device of the same type as the target device(s), on which all necessary packages have been

installed.

2. Install these packages on the source device to enable oem-config for the next reboot: ubiquity, oem-config,
and oem-config-gtk. Enter this command:

$ sudo apt-get install --no-install-recommends ubiquity oem-config oem-config-gtk

3. Remove the package nvidia-l4f-oem-config:

$ sudo dpkg --purge nvidia-l4t-oem-config

4. Clone the source device's APP partition to backup.img and backup.img.raw. For details, see To clone a Jetson
device and flash.

5. Mount backup.img.raw (an ext4 image file) on the host at a mount point of your choice.

6. Apply any Jetson-specific binaries to the image file. The nv-oem-config setup files are included in the
apply_binaries script. To run this script, enter:

$ cd Linux_for_Tegra
$ sudo ./apply_binaries.sh -r <root>

Where <root> represents the backup.img.raw mount point.

7. Set nv-oem-config.target as the default.target:

$ cd $root/etc/systemd/system
$ sudo rm default.target
$ sudo ln -s /lib/systemd/system/nv-oem-config.target default.target

8. Unmount the device mounted in step 5:

$ umount $root

9. Make a sparse version of the updated image file backup.img.raw and name it system.img:

$ cd Linux_for_Tegra/bootloader/
$ sudo ./mksparse -v –fillpattern=0 /path/to/backup.img.raw system.img

10. Flash system.img to the target device(s). For details, see To clone a Jetson device and flash.

To re-enable oem-config manually on an SD card
1. Select a source device of the same type as the target device(s) on which all necessary packages have been

installed.

2. Enter this command to install the following packages on the source device to enable oem-config for the next
reboot: ubiquity, oem-config, and oem-config-gtk:

$ sudo apt-get install --no-install-recommends ubiquity oem-config oem-config-gtk

3. Remove the package nvidia-l4f-oem-config:

$ sudo dpkg --purge nvidia-l4t-oem-config

11. Power off the source device and remove the SD card from it, then insert it into in the host system.

12. Mount partition #1 of the SD card (an ext4 filesystem) on the host, using a mount point of your choice.

13. Apply any Jetson-specific binaries to partition #1 of SD card. The appropriate files are listed in nv-oem-config, and
are applied by the apply_binaries script. Enter these commands to run the script:

$ cd Linux_for_Tegra
$ sudo ./apply_binaries.sh -r <root>

Where <root> represents the partition #1 of SD card mount point.

14. Set nv-oem-config.target as the default.target:

$ cd $root/etc/systemd/system
$ sudo rm default.target
$ sudo ln -s /lib/systemd/system/nv-oem-config.target default.target

15. Run jetson-disk-image-creator.sh to create a new SD card image with modified rootfs:

$ cd Linux_for_Tegra/tools
$ sudo ROOTFS_DIR=<root> ./jetson-disk-image-creator.sh -o sd-blob.img -b jetson-
nano-devkit -r 100

Where <root> represents partition #1 of the SD card on its mount point. For details, see To generate an image to
be flashed to an SD card.

16. Enter this command to unmount the device mounted in step 11:

$ umount $root

17. Flash sd-blob.img to the new SD card. For details, see Flashing to an SD Card.

About Communication Through the Debugging Port
The serial application on the host computer customarily communicates with oem-config through the host
computer’s tty device and the target device USB port that is used for flashing. (See Assumptions in the topic Quick
Start.)

Some Jetson developer kits also have a UART port on a 40-pin header. You can edit the oem-config configuration file
to make oem-config use this port instead. You must make this change before you flash images on the target device.

Jetson Nano devices support use of the micro USB connector as a debugging port. This is the easiest way to control a
headless Jetson Nano device, since a USB to TTL adapter is not required.

To configure oem-config to use a 40-pin header UART port
1. Locate the appropriate configuration file on the host computer:

• For Jetson Nano devices and Jetson TX1: <top>/etc/nv-oem-config.conf.t210

• For Jetson Xavier series: <top>/etc/nv-oem-config.conf.t194

• For Jetson TX2 series: <top>/etc/nv-oem-config.conf.t186

2. Open the configuration file and file the line that defines the property:

nv-oem-config-uart-port=ttyGS0

3. Change the value of this property from ttyS0 to ttyTHS1.

4. Save and close the configuration file.

5. Proceed to flash the target device as described elsewhere in this topic.

Headless Mode Flow in oem-config
Before the target system boots for the first time, you must start a serial application on the host computer. You may use
putty, screen, or any other serial application that communicates through the host computer’s tty device and
supports the UTF-8 character set.

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#wwconnect_header
https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/quick_start.html#

Note NVIDIA does not recommend using minicom for this application because it has some issues
dealing with UTF-8.

When the target device boots for the first time after flashing and finds no display device, it runs oem-config in
headless mode. Use the following procedure to reconfigure the target device.

To reconfigure the target device with oem-config
1. oem-config displays a welcome screen. To advance to the next screen, press Tab, then Enter.

2. oem-config displays the license that governs its use. Read the license, then accept it by pressing Tab, then Enter.

3. oem-config displays a screen that lists languages. Use the up and down-arrow keys to select the language you
want to use for the installation process. Then press the left and right-arrow keys to select “OK,” and press Enter.

Note To go back from any screen to the preceding one, select “Cancel” and press Enter. You can
go back more than one screen by doing this more than once.

4. oem-config displays a screen that lists locations in which the language you selected is used. Select your location;
then select “OK” and press Enter.

5. oem-config displays a screen that lists keyboard layouts. Select your keyboard’s layout, then select “OK” and
press Enter.

6. oem-config displays a screen that lists time zones that exist in the location you select. Select your time zone,
then select “OK” and press Enter.

If your time zone is not listed, select “Cancel” as many times as necessary to go back to the screen that lists
locations, and choose a different location.

7. oem-config asks whether you want to set the system clock to Universal Coordinated Time (UTC, or Greenwich
Mean Time). Linux expects the system clock to be set to UTC; therefore, NVIDIA recommends that you select “Yes”
and press Enter. If you are using another operating system that expects the system clock to set to local time,
however, select “No.”

8. oem-config asks you to specify your name. Enter your full name (e.g. John Smith), then select “OK” and press
Enter.

9. oem-config asks you to specify a username for your user account. oem-config creates a user account for this
name. then select “OK” and press Enter.

NVIDIA suggests using your first name, using lower case letters only. Use this account instead of the root account
for non-administrative activities.

10. oem-config asks you to specify a password for your user account. Enter a password, then select “OK” and press
Enter.

NVIDIA recommends that you specify a strong password, i.e. one that is more than eight characters long and
contains at least one each of upper and lower case letters, numerals, and punctuation characters. If you enter a
weak password, oem-config will ask you to confirm that you want to use it.

11. oem-config asks you to enter your password again to confirm that you entered it correctly. If you enter the same
password both times, it sets the password and goes on to the next step. If not, it prompts you to specify a password
again.

12. oem-config prompts you to create and enable a 4 GB SWAP file. It first displays a message which summarizes the
pluses and minuses of doing so:

Read the message and decide whether to create a SWAP file. Then press Enter to advance to the next screen:

To create and enable a SWAP file, select “Yes” and press Enter. To skip this step, select “No” and press Enter.

Note As the “Create SWAP File” screen explains, NVIDA recommends that you create and enable
a SWAP file if you plan to use your Jetson device for artificial intelligence (AI) and deep
learning applications.

Note that having a SWAP file may shorten life of you SD card due to increased writes to
the medium.

If you do not create a SWAP file in oem-config, you can later create one manually as
described in the section To create and enable a SWAP file manually.

13. oem-config prompts you to specify the desired size of the APP partition in megabytes. To request the maximum
possible size, leave the field empty or enter 0 (zero).

Note Note: This is only the case of “Flashing to an SD card.” For the other case, which uses
flash.sh, you can of course enlarge the APP partition statically with flash option ‑S.

14. oem-config displays a list of interfaces which it can use as the primary network interface during installation.

If you are using Ethernet as the primary network interface, make sure the Ethernet cable is connected. Then select
the eth0: Ethernet option, select “OK,” and press Enter.

15. oem-config prompts you to enter your host computer’s hostname. If you don’t know the host’s name, ask your
network administrator. If you are setting up a dedicated network, you may choose any name. Enter the hostname,
then select “OK,” and press Enter.

16. oem-config prompts you to select an nvpmodel mode:

Note Due to a known wireless network configuration bug in in this wizard, you must either
enter the SSID manually instead for selecting it from the list, or wait until after initial
setup is complete, then use the nmcli command to configure wireless networking. For
more details see the ubuntu.com documentation page Configure WiFi Connections.

https://docs.ubuntu.com/core/en/stacks/network/network-manager/docs/configure-wifi-connections

If you don’t know which mode to select, keep the default se�ing (highlighted on the screen).

You can change the nvpmodel mode at runtime through the nvpmodel GUI. For more information go to the topic
Clock Frequency and Power Management, and read the “nvpmodel GUI” subsection in the appropriate “Power
Management” section for your Jetson platform.

17. oem-config reconfigures the system with the selections you have made, then proceeds to the system’s log-in
prompt.

To create and enable a SWAP file manually
This procedure is an alternative to step 12 of the section To reconfigure the target device with oem-config. You may
perform it at any time after you run oem-config.

1. To create the SWAP file, enter these commands:

sudo fallocate -l 4G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile

2. To automount the swap file on boot, open /etc/fstab in a text editor, add this line, and save:

/swapfile swap swap defaults 0 0

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/clocks.html#

Note The fields in this line may be separated by any combination and number of tabs and
spaces. NVIDIA recommends spacing the fields to align with the fields in the file’s other
lines.

Skipping oem-config
If you don't want to run oem-config to set up your system, you can run the host script
l4t_create_default_user.sh before you flash to make the first-time boot process skip it. The boot process runs
oem‑config if no default user is defined; l4_create_default_user.sh creates a default user, and thus prevents
oem‑config from running.

The script’s usage is:

$ l4t_create_default_user.sh [‑u <user>] [‑p <pswd>] [‑n <host>] [‑a] [‑h]

This table describes the command line options:

Command line option Description

-u <user>
--username <user>

Creates a default user with the specified username. If omitted, the script
creates a default user named nvidia.

-p <pswd>
--password <pswd>

Creates the default user with the specified password. If omitted, script
generates a random password.

-n <host>
--hostname <host>

Creates the default user with the specified hostname. If this option is omitted,
the script uses the hostmane tegra-ubuntu.

-a
--autologin

Configures Jetson Linux to log in to the default user automatically when booted.
If omitted, the user must log in manually.

--accept-license Accepts the EULA for NVIDIA software. If omitted, the script prompts you to
accept the EULA.

-h
--help

Prints a description of the script’s usage.

Examples
• Creates a user named nvidia with the password NDZjMWM4 and the hostname tegra-ubuntu.

$ l4t_create_default_user.sh -u nvidia -p NDZjMWM4

• Creates a user named ubuntu with a randomly generated password and the host name tegra-ubuntu, and
configures Jetson Linux to log in to it automatically at boot.

$ l4t_create_default_user.sh -u ubuntu -a

• Creates a user named nvidia with a randomly generated password and the hostname tegra.

$ l4t_create_default_user.sh -n tegra

Modifying Jetson RAM Disk
Use the following procedure to modify the default configuration of a Jetson device’s RAM disk.

To modify RAM disk
1. Unpack your initrd:

$ sudo su
$ cp /boot/initrd /tmp
$ mkdir /tmp/temp

$ cd /tmp/temp
$ gunzip -c /tmp/initrd | cpio -i

2. Modify your initrd content in the tmp/temp/ folder:

3. Package your initrd:

$ sudo su
$ cd /tmp/temp
$ find . | cpio -H newc -o | gzip -9 -n > ../initrd

4. Replace the initrd with your customized initrd:

$ cp /tmp/initrd /boot/initrd

